Characterization of SiO2/SiC interface states and channel mobility from MOSFET characteristics including variable-range hopping at cryogenic temperature
The characteristics of SiC MOSFETs (drain current vs. gate voltage) were measured at 0.14−350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm−2 from the additional shift in the threshold gate vo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2018-04-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.5027695 |
Summary: | The characteristics of SiC MOSFETs (drain current vs. gate voltage) were measured at 0.14−350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm−2 from the additional shift in the threshold gate voltage with a temperature change. The wave-function size of interface states was determined from the temperature dependence of the measured hopping current and was comparable to the theoretical value. The channel mobility was approximately 100 cm2V−1s−1 and was almost independent of temperature. |
---|---|
ISSN: | 2158-3226 |