Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of <i>Salmonella</i>
Nucleic acid extraction is crucial for PCR detection of pathogenic bacteria to ensure food safety. In this study, a new magnetic extraction method was developed using 3D printing and magnetic silica beads (MSBs) to extract the target DNA from a large volume of bacterial sample and combined with micr...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/12/4/384 |
id |
doaj-299a0bf2dbe54803a3c9d8205d8e1ddb |
---|---|
record_format |
Article |
spelling |
doaj-299a0bf2dbe54803a3c9d8205d8e1ddb2021-04-01T23:10:19ZengMDPI AGMicromachines2072-666X2021-04-011238438410.3390/mi12040384Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of <i>Salmonella</i>Yuhe Wang0Wuzhen Qi1Lei Wang2Jianhan Lin3Yuanjie Liu4Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, ChinaKey Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, ChinaKey Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, ChinaKey Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, ChinaKey Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, ChinaNucleic acid extraction is crucial for PCR detection of pathogenic bacteria to ensure food safety. In this study, a new magnetic extraction method was developed using 3D printing and magnetic silica beads (MSBs) to extract the target DNA from a large volume of bacterial sample and combined with microfluidic PCR to determine the bacteria. After proteinase K was added into a bacterial sample to lyse the bacteria and release the DNA, it was continuous-flow injected into the serpentine channel of the extraction chip, where magnetic silica bead chains had been formed in advance using a homogeneous magnetic field generated by two concentric semicircle magnets to capture the MSBs. Then, the flowing DNA was captured by the MSB chains, washed with alcohol, dried with gas, and eluted with deionized water to obtain the purified and concentrated DNA. Finally, the extracted DNA templates were injected into a microfluidic PCR chip with lyophilized amplification reagents and determined using a commercial qPCR device. The experimental results showed that the DNA extraction efficiency was more than 90%, and the lower detection limit of <i>Salmonella</i> was 10<sup>2</sup> CFU/mL. This new <i>Salmonella</i> detection method is promising to provide the rapid, sensitive, and simultaneous detection of multiple foodborne pathogens.https://www.mdpi.com/2072-666X/12/4/384magnetic bead chainscontinuous-flow DNA extractionmicrofluidic PCR<i>Salmonella</i> detection |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yuhe Wang Wuzhen Qi Lei Wang Jianhan Lin Yuanjie Liu |
spellingShingle |
Yuhe Wang Wuzhen Qi Lei Wang Jianhan Lin Yuanjie Liu Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of <i>Salmonella</i> Micromachines magnetic bead chains continuous-flow DNA extraction microfluidic PCR <i>Salmonella</i> detection |
author_facet |
Yuhe Wang Wuzhen Qi Lei Wang Jianhan Lin Yuanjie Liu |
author_sort |
Yuhe Wang |
title |
Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of <i>Salmonella</i> |
title_short |
Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of <i>Salmonella</i> |
title_full |
Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of <i>Salmonella</i> |
title_fullStr |
Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of <i>Salmonella</i> |
title_full_unstemmed |
Magnetic Bead Chain-Based Continuous-Flow DNA Extraction for Microfluidic PCR Detection of <i>Salmonella</i> |
title_sort |
magnetic bead chain-based continuous-flow dna extraction for microfluidic pcr detection of <i>salmonella</i> |
publisher |
MDPI AG |
series |
Micromachines |
issn |
2072-666X |
publishDate |
2021-04-01 |
description |
Nucleic acid extraction is crucial for PCR detection of pathogenic bacteria to ensure food safety. In this study, a new magnetic extraction method was developed using 3D printing and magnetic silica beads (MSBs) to extract the target DNA from a large volume of bacterial sample and combined with microfluidic PCR to determine the bacteria. After proteinase K was added into a bacterial sample to lyse the bacteria and release the DNA, it was continuous-flow injected into the serpentine channel of the extraction chip, where magnetic silica bead chains had been formed in advance using a homogeneous magnetic field generated by two concentric semicircle magnets to capture the MSBs. Then, the flowing DNA was captured by the MSB chains, washed with alcohol, dried with gas, and eluted with deionized water to obtain the purified and concentrated DNA. Finally, the extracted DNA templates were injected into a microfluidic PCR chip with lyophilized amplification reagents and determined using a commercial qPCR device. The experimental results showed that the DNA extraction efficiency was more than 90%, and the lower detection limit of <i>Salmonella</i> was 10<sup>2</sup> CFU/mL. This new <i>Salmonella</i> detection method is promising to provide the rapid, sensitive, and simultaneous detection of multiple foodborne pathogens. |
topic |
magnetic bead chains continuous-flow DNA extraction microfluidic PCR <i>Salmonella</i> detection |
url |
https://www.mdpi.com/2072-666X/12/4/384 |
work_keys_str_mv |
AT yuhewang magneticbeadchainbasedcontinuousflowdnaextractionformicrofluidicpcrdetectionofisalmonellai AT wuzhenqi magneticbeadchainbasedcontinuousflowdnaextractionformicrofluidicpcrdetectionofisalmonellai AT leiwang magneticbeadchainbasedcontinuousflowdnaextractionformicrofluidicpcrdetectionofisalmonellai AT jianhanlin magneticbeadchainbasedcontinuousflowdnaextractionformicrofluidicpcrdetectionofisalmonellai AT yuanjieliu magneticbeadchainbasedcontinuousflowdnaextractionformicrofluidicpcrdetectionofisalmonellai |
_version_ |
1724175394843656192 |