Exponential and Hypoexponential Distributions: Some Characterizations
The (general) hypoexponential distribution is the distribution of a sum of independent exponential random variables. We consider the particular case when the involved exponential variables have distinct rate parameters. We prove that the following converse result is true. If for some <inline-form...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/12/2207 |
id |
doaj-29922b568df9468d9e34fe5934dd7b09 |
---|---|
record_format |
Article |
spelling |
doaj-29922b568df9468d9e34fe5934dd7b092020-12-13T00:01:51ZengMDPI AGMathematics2227-73902020-12-0182207220710.3390/math8122207Exponential and Hypoexponential Distributions: Some CharacterizationsGeorge P. Yanev0Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USAThe (general) hypoexponential distribution is the distribution of a sum of independent exponential random variables. We consider the particular case when the involved exponential variables have distinct rate parameters. We prove that the following converse result is true. If for some <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>,</mo><msub><mi>X</mi><mn>2</mn></msub><mo>,</mo><mspace width="0.166667em"></mspace><mi>…</mi><mo>,</mo><mspace width="0.166667em"></mspace><msub><mi>X</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> are independent copies of a random variable <i>X</i> with unknown distribution <i>F</i> and a specific linear combination of <inline-formula><math display="inline"><semantics><msub><mi>X</mi><mi>j</mi></msub></semantics></math></inline-formula>’s has hypoexponential distribution, then <i>F</i> is exponential. Thus, we obtain new characterizations of the exponential distribution. As corollaries of the main results, we extend some previous characterizations established recently by Arnold and Villaseñor (2013) for a particular convolution of two random variables.https://www.mdpi.com/2227-7390/8/12/2207exponential distributionhypoexponential distributioncharacterizations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
George P. Yanev |
spellingShingle |
George P. Yanev Exponential and Hypoexponential Distributions: Some Characterizations Mathematics exponential distribution hypoexponential distribution characterizations |
author_facet |
George P. Yanev |
author_sort |
George P. Yanev |
title |
Exponential and Hypoexponential Distributions: Some Characterizations |
title_short |
Exponential and Hypoexponential Distributions: Some Characterizations |
title_full |
Exponential and Hypoexponential Distributions: Some Characterizations |
title_fullStr |
Exponential and Hypoexponential Distributions: Some Characterizations |
title_full_unstemmed |
Exponential and Hypoexponential Distributions: Some Characterizations |
title_sort |
exponential and hypoexponential distributions: some characterizations |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-12-01 |
description |
The (general) hypoexponential distribution is the distribution of a sum of independent exponential random variables. We consider the particular case when the involved exponential variables have distinct rate parameters. We prove that the following converse result is true. If for some <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>,</mo><msub><mi>X</mi><mn>2</mn></msub><mo>,</mo><mspace width="0.166667em"></mspace><mi>…</mi><mo>,</mo><mspace width="0.166667em"></mspace><msub><mi>X</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> are independent copies of a random variable <i>X</i> with unknown distribution <i>F</i> and a specific linear combination of <inline-formula><math display="inline"><semantics><msub><mi>X</mi><mi>j</mi></msub></semantics></math></inline-formula>’s has hypoexponential distribution, then <i>F</i> is exponential. Thus, we obtain new characterizations of the exponential distribution. As corollaries of the main results, we extend some previous characterizations established recently by Arnold and Villaseñor (2013) for a particular convolution of two random variables. |
topic |
exponential distribution hypoexponential distribution characterizations |
url |
https://www.mdpi.com/2227-7390/8/12/2207 |
work_keys_str_mv |
AT georgepyanev exponentialandhypoexponentialdistributionssomecharacterizations |
_version_ |
1724385621564194816 |