Exponential and Hypoexponential Distributions: Some Characterizations

The (general) hypoexponential distribution is the distribution of a sum of independent exponential random variables. We consider the particular case when the involved exponential variables have distinct rate parameters. We prove that the following converse result is true. If for some <inline-form...

Full description

Bibliographic Details
Main Author: George P. Yanev
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/12/2207
id doaj-29922b568df9468d9e34fe5934dd7b09
record_format Article
spelling doaj-29922b568df9468d9e34fe5934dd7b092020-12-13T00:01:51ZengMDPI AGMathematics2227-73902020-12-0182207220710.3390/math8122207Exponential and Hypoexponential Distributions: Some CharacterizationsGeorge P. Yanev0Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USAThe (general) hypoexponential distribution is the distribution of a sum of independent exponential random variables. We consider the particular case when the involved exponential variables have distinct rate parameters. We prove that the following converse result is true. If for some <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>,</mo><msub><mi>X</mi><mn>2</mn></msub><mo>,</mo><mspace width="0.166667em"></mspace><mi>…</mi><mo>,</mo><mspace width="0.166667em"></mspace><msub><mi>X</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> are independent copies of a random variable <i>X</i> with unknown distribution <i>F</i> and a specific linear combination of <inline-formula><math display="inline"><semantics><msub><mi>X</mi><mi>j</mi></msub></semantics></math></inline-formula>’s has hypoexponential distribution, then <i>F</i> is exponential. Thus, we obtain new characterizations of the exponential distribution. As corollaries of the main results, we extend some previous characterizations established recently by Arnold and Villaseñor (2013) for a particular convolution of two random variables.https://www.mdpi.com/2227-7390/8/12/2207exponential distributionhypoexponential distributioncharacterizations
collection DOAJ
language English
format Article
sources DOAJ
author George P. Yanev
spellingShingle George P. Yanev
Exponential and Hypoexponential Distributions: Some Characterizations
Mathematics
exponential distribution
hypoexponential distribution
characterizations
author_facet George P. Yanev
author_sort George P. Yanev
title Exponential and Hypoexponential Distributions: Some Characterizations
title_short Exponential and Hypoexponential Distributions: Some Characterizations
title_full Exponential and Hypoexponential Distributions: Some Characterizations
title_fullStr Exponential and Hypoexponential Distributions: Some Characterizations
title_full_unstemmed Exponential and Hypoexponential Distributions: Some Characterizations
title_sort exponential and hypoexponential distributions: some characterizations
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-12-01
description The (general) hypoexponential distribution is the distribution of a sum of independent exponential random variables. We consider the particular case when the involved exponential variables have distinct rate parameters. We prove that the following converse result is true. If for some <inline-formula><math display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>,</mo><msub><mi>X</mi><mn>2</mn></msub><mo>,</mo><mspace width="0.166667em"></mspace><mi>…</mi><mo>,</mo><mspace width="0.166667em"></mspace><msub><mi>X</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> are independent copies of a random variable <i>X</i> with unknown distribution <i>F</i> and a specific linear combination of <inline-formula><math display="inline"><semantics><msub><mi>X</mi><mi>j</mi></msub></semantics></math></inline-formula>’s has hypoexponential distribution, then <i>F</i> is exponential. Thus, we obtain new characterizations of the exponential distribution. As corollaries of the main results, we extend some previous characterizations established recently by Arnold and Villaseñor (2013) for a particular convolution of two random variables.
topic exponential distribution
hypoexponential distribution
characterizations
url https://www.mdpi.com/2227-7390/8/12/2207
work_keys_str_mv AT georgepyanev exponentialandhypoexponentialdistributionssomecharacterizations
_version_ 1724385621564194816