Nonlinear Integrodifferential Equations of Mixed Type in Banach Spaces

We prove two existence theorems for the integrodifferential equation of mixed type: x'(t)=f(t,x(t),∫0tk1(t,s)g(s,x(s))ds,∫0ak2(t,s)h(s,x(s))ds), x(0)=x0, where in the first part of this paper f, g, h, x are functions with values in a Banach space E and integrals are taken in the sense of Hensto...

Full description

Bibliographic Details
Main Authors: Aneta Sikorska-Nowak, Grzegorz Nowak
Format: Article
Language:English
Published: Hindawi Limited 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/65947
Description
Summary:We prove two existence theorems for the integrodifferential equation of mixed type: x'(t)=f(t,x(t),∫0tk1(t,s)g(s,x(s))ds,∫0ak2(t,s)h(s,x(s))ds), x(0)=x0, where in the first part of this paper f, g, h, x are functions with values in a Banach space E and integrals are taken in the sense of Henstock-Kurzweil (HK). In the second part f, g, h, x are weakly-weakly sequentially continuous functions and integrals are taken in the sense of Henstock-Kurzweil-Pettis (HKP) integral. Additionally, the functions f, g, h, x satisfy some conditions expressed in terms of the measure of noncompactness or the measure of weak noncompactness.
ISSN:0161-1712
1687-0425