Genetic management strategies for controlling infectious diseases in livestock populations
<p>Abstract</p> <p>This paper considers the use of disease resistance genes to control the transmission of infection through an animal population. Transmission is summarised by R<sub>0</sub>, the basic reproductive ratio of a pathogen. If R<sub>0 </sub>>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | deu |
Published: |
BMC
2003-06-01
|
Series: | Genetics Selection Evolution |
Subjects: | |
Online Access: | http://www.gsejournal.org/content/35/S1/S3 |
id |
doaj-295e7ba1b174457296d9ec57a19495e8 |
---|---|
record_format |
Article |
spelling |
doaj-295e7ba1b174457296d9ec57a19495e82020-11-24T21:33:40ZdeuBMCGenetics Selection Evolution0999-193X1297-96862003-06-0135Suppl 1S3S1710.1186/1297-9686-35-S1-S3Genetic management strategies for controlling infectious diseases in livestock populationsBishop Stephen CMacKenzie Katrin M<p>Abstract</p> <p>This paper considers the use of disease resistance genes to control the transmission of infection through an animal population. Transmission is summarised by R<sub>0</sub>, the basic reproductive ratio of a pathogen. If R<sub>0 </sub>> 1.0 a major epidemic can occur, thus a disease control strategy should aim to reduce R<sub>0 </sub>below 1.0, <it>e.g</it>. by mixing resistant with susceptible wild-type animals. Suppose there is a resistance allele, such that transmission of infection through a population homozygous for this allele will be R<sub>02 </sub>< R<sub>01</sub>, where R<sub>01 </sub>describes transmission in the wildtype population. For an otherwise homogeneous population comprising animals of these two groups, R<sub>0 </sub>is the weighted average of the two sub-populations: R<sub>0 </sub>= R<sub>01<it>ρ </it></sub>+ R<sub>02 </sub>(1 - <it>ρ</it>), where <it>ρ </it>is the proportion of wildtype animals. If R<sub>01 </sub>> 1 and R<sub>02 </sub>< 1, the proportions of the two genotypes should be such that R<sub>0 </sub>≤ 1, <it>i.e</it>. <it>ρ </it>≤ (R<sub>0 </sub>- R<sub>02</sub>)/(R<sub>01 </sub>- R<sub>02</sub>). If R<sub>02 </sub>= 0, the proportion of resistant animals must be at least 1 - 1/R<sub>01</sub>. For an <it>n </it>genotype model the requirement is still to have R<sub>0 </sub>≤ 1.0. Probabilities of epidemics in genetically mixed populations conditional upon the presence of a single infected animal were derived. The probability of no epidemic is always 1/(R<sub>0 </sub>+ 1). When R<sub>0 </sub>≤ 1 the probability of a minor epidemic, which dies out without intervention, is R<sub>0</sub>/(R<sub>0 </sub>+ 1). When R<sub>0 </sub>> 1 the probability of a minor and major epidemics are 1/(R<sub>0 </sub>+ 1) and (R<sub>0 </sub>- 1)/(R<sub>0 </sub>+ 1). Wherever possible a combination of genotypes should be used to minimise the invasion possibilities of pathogens that have mutated to overcome the effects of specific resistance alleles.</p> http://www.gsejournal.org/content/35/S1/S3geneticsepidemiologydisease resistancelivestockR<sub>0</sub> |
collection |
DOAJ |
language |
deu |
format |
Article |
sources |
DOAJ |
author |
Bishop Stephen C MacKenzie Katrin M |
spellingShingle |
Bishop Stephen C MacKenzie Katrin M Genetic management strategies for controlling infectious diseases in livestock populations Genetics Selection Evolution genetics epidemiology disease resistance livestock R<sub>0</sub> |
author_facet |
Bishop Stephen C MacKenzie Katrin M |
author_sort |
Bishop Stephen C |
title |
Genetic management strategies for controlling infectious diseases in livestock populations |
title_short |
Genetic management strategies for controlling infectious diseases in livestock populations |
title_full |
Genetic management strategies for controlling infectious diseases in livestock populations |
title_fullStr |
Genetic management strategies for controlling infectious diseases in livestock populations |
title_full_unstemmed |
Genetic management strategies for controlling infectious diseases in livestock populations |
title_sort |
genetic management strategies for controlling infectious diseases in livestock populations |
publisher |
BMC |
series |
Genetics Selection Evolution |
issn |
0999-193X 1297-9686 |
publishDate |
2003-06-01 |
description |
<p>Abstract</p> <p>This paper considers the use of disease resistance genes to control the transmission of infection through an animal population. Transmission is summarised by R<sub>0</sub>, the basic reproductive ratio of a pathogen. If R<sub>0 </sub>> 1.0 a major epidemic can occur, thus a disease control strategy should aim to reduce R<sub>0 </sub>below 1.0, <it>e.g</it>. by mixing resistant with susceptible wild-type animals. Suppose there is a resistance allele, such that transmission of infection through a population homozygous for this allele will be R<sub>02 </sub>< R<sub>01</sub>, where R<sub>01 </sub>describes transmission in the wildtype population. For an otherwise homogeneous population comprising animals of these two groups, R<sub>0 </sub>is the weighted average of the two sub-populations: R<sub>0 </sub>= R<sub>01<it>ρ </it></sub>+ R<sub>02 </sub>(1 - <it>ρ</it>), where <it>ρ </it>is the proportion of wildtype animals. If R<sub>01 </sub>> 1 and R<sub>02 </sub>< 1, the proportions of the two genotypes should be such that R<sub>0 </sub>≤ 1, <it>i.e</it>. <it>ρ </it>≤ (R<sub>0 </sub>- R<sub>02</sub>)/(R<sub>01 </sub>- R<sub>02</sub>). If R<sub>02 </sub>= 0, the proportion of resistant animals must be at least 1 - 1/R<sub>01</sub>. For an <it>n </it>genotype model the requirement is still to have R<sub>0 </sub>≤ 1.0. Probabilities of epidemics in genetically mixed populations conditional upon the presence of a single infected animal were derived. The probability of no epidemic is always 1/(R<sub>0 </sub>+ 1). When R<sub>0 </sub>≤ 1 the probability of a minor epidemic, which dies out without intervention, is R<sub>0</sub>/(R<sub>0 </sub>+ 1). When R<sub>0 </sub>> 1 the probability of a minor and major epidemics are 1/(R<sub>0 </sub>+ 1) and (R<sub>0 </sub>- 1)/(R<sub>0 </sub>+ 1). Wherever possible a combination of genotypes should be used to minimise the invasion possibilities of pathogens that have mutated to overcome the effects of specific resistance alleles.</p> |
topic |
genetics epidemiology disease resistance livestock R<sub>0</sub> |
url |
http://www.gsejournal.org/content/35/S1/S3 |
work_keys_str_mv |
AT bishopstephenc geneticmanagementstrategiesforcontrollinginfectiousdiseasesinlivestockpopulations AT mackenziekatrinm geneticmanagementstrategiesforcontrollinginfectiousdiseasesinlivestockpopulations |
_version_ |
1725952648946909184 |