Summary: | Background: Novel magnetic resonance (MR) imaging techniques have led to the development of T1-w/T2-w ratio images or “myelin-sensitive maps (MMs)” to estimate and compare myelin content in vivo. Currently, raw image intensities in conventional MR images are unstandardized, preventing meaningful quantitative comparisons. We propose an improved workflow to standardize the MMs, which was applied to patients with classic trigeminal neuralgia (CTN) and trigeminal neuralgia secondary to multiple sclerosis (MSTN), to assess the validity and feasibility of this clinical tool. Methods: T1-w and T2-w images were obtained for 17 CTN patients and 17 MSTN patients using a 3 T scanner. Template images were obtained from ICBM152. Multiple sclerosis (MS) plaques in the pons were labelled in MSTN patients. For each patient image, a Gaussian curve was fitted to the histogram of its intensity distribution, and transformed to match the Gaussian curve of its template image. Results: After standardization, the structural contrast of the patient image and its histogram more closely resembled the ICBM152 template. Moreover, there was reduced variability in the histogram peaks of the gray and white matter between patients after standardization (p < 0.001). MM intensities were decreased within MS plaques, compared to normal-appearing white matter (NAWM) in MSTN patients (p < 0.001) and its corresponding regions in CTN patients (p < 0.001). Conclusions: Images intensities are calibrated according to a mathematic relationship between the intensities of the patient image and its template. Reduced variability among histogram peaks allows for interpretation of tissue-specific intensity and facilitates quantitative analysis. The resultant MMs facilitate comparisons of myelin content between different regions of the brain and between different patients in vivo. MM analysis revealed reduced myelin content in MS plaques compared to its corresponding regions in CTN patients and its surrounding NAWM in MSTN patients. Thus, the standardized MM serves as a non-invasive, easily-automated tool that can be feasibly applied to clinical populations for quantitative analyses of myelin content.
|