Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information
This paper explores an event-based version of quantum mechanics which differs from the commonly accepted one, even though the usual elements of quantum formalism, e.g., the Hilbert space, are maintained. This version introduces as primary element the occurrence of micro-events induced by usual physi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/2/181 |
id |
doaj-2943b5e4cad84322adb7fc7c5cae4927 |
---|---|
record_format |
Article |
spelling |
doaj-2943b5e4cad84322adb7fc7c5cae49272020-11-24T20:45:38ZengMDPI AGSymmetry2073-89942019-02-0111218110.3390/sym11020181sym11020181Event-Based Quantum Mechanics: A Context for the Emergence of Classical InformationIgnazio Licata0Leonardo Chiatti1School of Advanced International Studies on Applied Theoretical and Non Linear Methodologies in Physics, 70121 Bari, ItalyASL VT Medical Physics Laboratory, Via Enrico Fermi 15, 01100 Viterbo, ItalyThis paper explores an event-based version of quantum mechanics which differs from the commonly accepted one, even though the usual elements of quantum formalism, e.g., the Hilbert space, are maintained. This version introduces as primary element the occurrence of micro-events induced by usual physical (mechanical, electromagnetic and so on) interactions. These micro-events correspond to state reductions and are identified with quantum jumps, already introduced by Bohr in his atomic model and experimentally well established today. Macroscopic bodies are defined as clusters of jumps; the emergence of classicality thus becomes understandable and time honoured paradoxes can be solved. In particular, we discuss the cat paradox in this context. Quantum jumps are described as temporal localizations of physical quantities; if the information associated with these localizations has to be finite, two time scales spontaneously appear: an upper cosmological scale and a lower scale of elementary “particles„. This allows the interpretation of the Bekenstein limit like a particular informational constraint on the manifestation of a micro-event in the cosmos it belongs. The topic appears relevant in relation to recent discussions on possible spatiotemporal constraints on quantum computing.https://www.mdpi.com/2073-8994/11/2/181Bekenstein informationemergent timelocalizationquantum jumpquantum measurements |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ignazio Licata Leonardo Chiatti |
spellingShingle |
Ignazio Licata Leonardo Chiatti Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information Symmetry Bekenstein information emergent time localization quantum jump quantum measurements |
author_facet |
Ignazio Licata Leonardo Chiatti |
author_sort |
Ignazio Licata |
title |
Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information |
title_short |
Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information |
title_full |
Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information |
title_fullStr |
Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information |
title_full_unstemmed |
Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information |
title_sort |
event-based quantum mechanics: a context for the emergence of classical information |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2019-02-01 |
description |
This paper explores an event-based version of quantum mechanics which differs from the commonly accepted one, even though the usual elements of quantum formalism, e.g., the Hilbert space, are maintained. This version introduces as primary element the occurrence of micro-events induced by usual physical (mechanical, electromagnetic and so on) interactions. These micro-events correspond to state reductions and are identified with quantum jumps, already introduced by Bohr in his atomic model and experimentally well established today. Macroscopic bodies are defined as clusters of jumps; the emergence of classicality thus becomes understandable and time honoured paradoxes can be solved. In particular, we discuss the cat paradox in this context. Quantum jumps are described as temporal localizations of physical quantities; if the information associated with these localizations has to be finite, two time scales spontaneously appear: an upper cosmological scale and a lower scale of elementary “particles„. This allows the interpretation of the Bekenstein limit like a particular informational constraint on the manifestation of a micro-event in the cosmos it belongs. The topic appears relevant in relation to recent discussions on possible spatiotemporal constraints on quantum computing. |
topic |
Bekenstein information emergent time localization quantum jump quantum measurements |
url |
https://www.mdpi.com/2073-8994/11/2/181 |
work_keys_str_mv |
AT ignaziolicata eventbasedquantummechanicsacontextfortheemergenceofclassicalinformation AT leonardochiatti eventbasedquantummechanicsacontextfortheemergenceofclassicalinformation |
_version_ |
1716814284948766720 |