Identification of a biomarker panel for colorectal cancer diagnosis

<p>Abstract</p> <p>Background</p> <p>Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neopla...

Full description

Bibliographic Details
Main Authors: García-Bilbao Amaia, Armañanzas Rubén, Ispizua Ziortza, Calvo Begoña, Alonso-Varona Ana, Inza Iñaki, Larrañaga Pedro, López-Vivanco Guillermo, Suárez-Merino Blanca, Betanzos Mónica
Format: Article
Language:English
Published: BMC 2012-01-01
Series:BMC Cancer
Online Access:http://www.biomedcentral.com/1471-2407/12/43
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries.</p> <p>Methods</p> <p>A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables.</p> <p>Results</p> <p>After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples.</p> <p>Conclusions</p> <p>We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).</p>
ISSN:1471-2407