Summary: | Abstract A pseudohomogeneous carrier as an emerging term refers to subnanometric carbon-based vehicle with a high ability to interact with genetic materials to form stable carboplex and successfully transfer them into the cell which will result in inhibiting or expressing of therapeutic genes. Chitosan is a non-toxic polyaminosaccharide used as a precursor in the presence of citric acid to produce carbon quantum dots (CQDs), which decorated with arginine as a surface passivation agent with high amine density in hydrothermal methodology. The Arginine-CQDs are comprehensively characterized by Fourier-transform infrared spectroscopy (FT-IR), Ultraviolet–visible spectroscopy (UV–vis), Atomic force microscopy (AFM), field emission scanning electron microscope (FE-SEM), Energy-dispersive X-ray (EDX) mapping, fluorescence, High-resolution transmission electron microscopy (HR-TEM), zeta potential and X-ray powder diffraction (XRD). In this regard, for the first time, carboplex are formed by electrostatic conjugating of Arginine-CQDs with DNA to protect it from enzymatic degradation. Moreover, the carboplex, like the chitosan precursor, has not shown toxicity against AGS cell line. Interestingly, the Arginine-CQDs have exhibited an excellent ability to overcome cell barriers to deliver into cells compared to chitosan at the same weight ratio. The Arginine-CQDs/pEGFP (W/W) nanocomplex, not only lead to transfection with a relatively higher efficiency than PEI polymer, which is the “golden standard”, but carboplex also demonstrates no significant toxicity. Indeed, the EGFP expression level has reached to 2.4 ± 0.2 via Arginine-CQDs carboplex at W/W 50 weight ratio. To the best of our knowledge, this is the first report includes chitosan-based CQDs functionalized by arginine which is applied to serve as a pseudohomogeneous vehicle for gene transfection.
|