Remote Sensing of Atmospheric CO and O3 Anomalies before and after Two Yutian MS7.3 Earthquakes

Satellite remote sensing data were used to extract concentrations and volume mixing ratios (VMR) of CO and O3 and Global Data Assimilation System (GDAS) data associated with Yutian MS7.3 earthquakes on March 21, 2008, and February 12, 2014. Difference value and anomaly index methods and the Hybrid S...

Full description

Bibliographic Details
Main Authors: Haodong Liang, Cunlin Xin, Haibo Liu, Guoyun Di, Songxin Liu, Liang Zhang
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2021/1747705
Description
Summary:Satellite remote sensing data were used to extract concentrations and volume mixing ratios (VMR) of CO and O3 and Global Data Assimilation System (GDAS) data associated with Yutian MS7.3 earthquakes on March 21, 2008, and February 12, 2014. Difference value and anomaly index methods and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model were used to simulate gas backward trajectories and analyze the relations between spatial and temporal variations in total columns of CO and O3 (TotCO and TotO3) and earthquakes. Then, the causes of abnormal changes were examined. Maximum anomalies in TotCO and TotO3 occurred one month before the 2008 earthquake and one month after the 2014 earthquake. Anomalies in TotCO and TotO3 were distributed along or were consistent with the fault zone. Furthermore, during the abnormal period, the coefficient of correlation between CO and O3 was 0.672 in 2008 and 0.638 in 2014, with both values significant at p<0.05. The correlation between TotCO and TotO3 was also significant. The abnormal phenomena of TotCO and TotO3 associated with the two earthquakes were attributed to underground gas escape, atmospheric chemical reactions, and atmospheric transportation caused by in situ stress in the generation of earthquakes.
ISSN:1468-8123