Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual laterality
Hand preference in infancy is marked by many developmental shifts in hand use and arm coupling as infants reach for and manipulate objects. Research has linked these early shifts in hand use to the emergence of fundamental postural-locomotor milestones. Specifically, it was found that bimanual reac...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2014-03-01
|
Series: | Frontiers in Psychology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fpsyg.2014.00245/full |
id |
doaj-28f8b5e4b12644ee8c2c6435d6c4a181 |
---|---|
record_format |
Article |
spelling |
doaj-28f8b5e4b12644ee8c2c6435d6c4a1812020-11-24T23:15:50ZengFrontiers Media S.A.Frontiers in Psychology1664-10782014-03-01510.3389/fpsyg.2014.0024574175Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual lateralityDaniela eCorbetta0Denise R Friedman1Martha Ann eBell2University of TennesseeRoanoke CollegeVirginia TechHand preference in infancy is marked by many developmental shifts in hand use and arm coupling as infants reach for and manipulate objects. Research has linked these early shifts in hand use to the emergence of fundamental postural-locomotor milestones. Specifically, it was found that bimanual reaching declines when infants learn to sit; increases if infants begin to scoot in a sitting posture; declines when infants begin to crawl on hands-and-knees; and increases again when infants start walking upright. Why such pattern fluctuations during periods of postural-locomotor learning? One proposed hypothesis is that arm use practiced for the specific purpose of controlling posture and achieving locomotion transfers to reaching via brain functional reorganization. There has been scientific support for functional cortical reorganization and change in neural connectivity in response to motor practice in adults and animals, and as a function of crawling experience in human infants. In this research, we examined whether changes in neural connectivity also occurred as infants coupled their arms when learning to walk and whether such coupling mapped onto reaching laterality. EEG coherence data were collected from 43 12-month-olds infants with varied levels of walking experience. EEG was recorded during quiet, attentive baseline. Walking proficiency was laboratory assessed and reaching responses were captured using small toys presented at midline while infants were sitting. Results revealed greater EEG coherence at homologous prefrontal/central scalp locations for the novice walkers compared to the pre-walkers or more experienced walkers. In addition, reaching laterality was low in pre-walkers and early walkers, but high in experienced walkers. These results are consistent with the interpretation that arm coupling practiced during early walking transferred to reaching via brain functional reorganization, leading to the observed developmental changes in manual laterality.http://journal.frontiersin.org/Journal/10.3389/fpsyg.2014.00245/fullWalkingreachingEEG Coherencehuman infantsbrain reorganizationmanual laterality |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Daniela eCorbetta Denise R Friedman Martha Ann eBell |
spellingShingle |
Daniela eCorbetta Denise R Friedman Martha Ann eBell Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual laterality Frontiers in Psychology Walking reaching EEG Coherence human infants brain reorganization manual laterality |
author_facet |
Daniela eCorbetta Denise R Friedman Martha Ann eBell |
author_sort |
Daniela eCorbetta |
title |
Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual laterality |
title_short |
Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual laterality |
title_full |
Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual laterality |
title_fullStr |
Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual laterality |
title_full_unstemmed |
Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual laterality |
title_sort |
brain reorganization as a function of walking experience in 12 month-old infants: implications for the development of manual laterality |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Psychology |
issn |
1664-1078 |
publishDate |
2014-03-01 |
description |
Hand preference in infancy is marked by many developmental shifts in hand use and arm coupling as infants reach for and manipulate objects. Research has linked these early shifts in hand use to the emergence of fundamental postural-locomotor milestones. Specifically, it was found that bimanual reaching declines when infants learn to sit; increases if infants begin to scoot in a sitting posture; declines when infants begin to crawl on hands-and-knees; and increases again when infants start walking upright. Why such pattern fluctuations during periods of postural-locomotor learning? One proposed hypothesis is that arm use practiced for the specific purpose of controlling posture and achieving locomotion transfers to reaching via brain functional reorganization. There has been scientific support for functional cortical reorganization and change in neural connectivity in response to motor practice in adults and animals, and as a function of crawling experience in human infants. In this research, we examined whether changes in neural connectivity also occurred as infants coupled their arms when learning to walk and whether such coupling mapped onto reaching laterality. EEG coherence data were collected from 43 12-month-olds infants with varied levels of walking experience. EEG was recorded during quiet, attentive baseline. Walking proficiency was laboratory assessed and reaching responses were captured using small toys presented at midline while infants were sitting. Results revealed greater EEG coherence at homologous prefrontal/central scalp locations for the novice walkers compared to the pre-walkers or more experienced walkers. In addition, reaching laterality was low in pre-walkers and early walkers, but high in experienced walkers. These results are consistent with the interpretation that arm coupling practiced during early walking transferred to reaching via brain functional reorganization, leading to the observed developmental changes in manual laterality. |
topic |
Walking reaching EEG Coherence human infants brain reorganization manual laterality |
url |
http://journal.frontiersin.org/Journal/10.3389/fpsyg.2014.00245/full |
work_keys_str_mv |
AT danielaecorbetta brainreorganizationasafunctionofwalkingexperiencein12montholdinfantsimplicationsforthedevelopmentofmanuallaterality AT deniserfriedman brainreorganizationasafunctionofwalkingexperiencein12montholdinfantsimplicationsforthedevelopmentofmanuallaterality AT marthaannebell brainreorganizationasafunctionofwalkingexperiencein12montholdinfantsimplicationsforthedevelopmentofmanuallaterality |
_version_ |
1725589271192010752 |