Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting

Damage classification is an important topic in the development of structural health monitoring systems. When applied to wind-turbine foundations, it provides information about the state of the structure, helps in maintenance, and prevents catastrophic failures. A data-driven pattern-recognition meth...

Full description

Bibliographic Details
Main Authors: Jersson X. Leon-Medina, Maribel Anaya, Núria Parés, Diego A. Tibaduiza, Francesc Pozo
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/8/2748
id doaj-28dbe4861fef4887bd97923377fddedb
record_format Article
spelling doaj-28dbe4861fef4887bd97923377fddedb2021-04-13T23:05:43ZengMDPI AGSensors1424-82202021-04-01212748274810.3390/s21082748Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient BoostingJersson X. Leon-Medina0Maribel Anaya1Núria Parés2Diego A. Tibaduiza3Francesc Pozo4Control, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, SpainMEM (Modelling-Electronics and Monitoring Research Group), Faculty of Electronics Engineering, Universidad Santo Tomás, Bogotá 110231, ColombiaLaboratori de Càlcul Numèric (LaCàN), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, SpainDepartamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Cra 45 No. 26-85, Bogotá 111321, ColombiaControl, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, SpainDamage classification is an important topic in the development of structural health monitoring systems. When applied to wind-turbine foundations, it provides information about the state of the structure, helps in maintenance, and prevents catastrophic failures. A data-driven pattern-recognition methodology for structural damage classification was developed in this study. The proposed methodology involves several stages: (1) data acquisition, (2) data arrangement, (3) data normalization through the mean-centered unitary group-scaling method, (4) linear feature extraction, (5) classification using the extreme gradient boosting machine learning classifier, and (6) validation applying a 5-fold cross-validation technique. The linear feature extraction capabilities of principal component analysis are employed; the original data of 58,008 features is reduced to only 21 features. The methodology is validated with an experimental test performed in a small-scale wind-turbine foundation structure that simulates the perturbation effects caused by wind and marine waves by applying an unknown white noise signal excitation to the structure. A vibration-response methodology is selected for collecting accelerometer data from both the healthy structure and the structure subjected to four different damage scenarios. The datasets are satisfactorily classified, with performance measures over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99</mn><mo>.</mo><mn>9</mn><mo>%</mo></mrow></semantics></math></inline-formula> after using the proposed damage classification methodology.https://www.mdpi.com/1424-8220/21/8/2748structural health monitoringprincipal component analysisextreme gradient boostingmachine learningclassificationwind-turbine foundation
collection DOAJ
language English
format Article
sources DOAJ
author Jersson X. Leon-Medina
Maribel Anaya
Núria Parés
Diego A. Tibaduiza
Francesc Pozo
spellingShingle Jersson X. Leon-Medina
Maribel Anaya
Núria Parés
Diego A. Tibaduiza
Francesc Pozo
Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting
Sensors
structural health monitoring
principal component analysis
extreme gradient boosting
machine learning
classification
wind-turbine foundation
author_facet Jersson X. Leon-Medina
Maribel Anaya
Núria Parés
Diego A. Tibaduiza
Francesc Pozo
author_sort Jersson X. Leon-Medina
title Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting
title_short Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting
title_full Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting
title_fullStr Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting
title_full_unstemmed Structural Damage Classification in a Jacket-Type Wind-Turbine Foundation Using Principal Component Analysis and Extreme Gradient Boosting
title_sort structural damage classification in a jacket-type wind-turbine foundation using principal component analysis and extreme gradient boosting
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2021-04-01
description Damage classification is an important topic in the development of structural health monitoring systems. When applied to wind-turbine foundations, it provides information about the state of the structure, helps in maintenance, and prevents catastrophic failures. A data-driven pattern-recognition methodology for structural damage classification was developed in this study. The proposed methodology involves several stages: (1) data acquisition, (2) data arrangement, (3) data normalization through the mean-centered unitary group-scaling method, (4) linear feature extraction, (5) classification using the extreme gradient boosting machine learning classifier, and (6) validation applying a 5-fold cross-validation technique. The linear feature extraction capabilities of principal component analysis are employed; the original data of 58,008 features is reduced to only 21 features. The methodology is validated with an experimental test performed in a small-scale wind-turbine foundation structure that simulates the perturbation effects caused by wind and marine waves by applying an unknown white noise signal excitation to the structure. A vibration-response methodology is selected for collecting accelerometer data from both the healthy structure and the structure subjected to four different damage scenarios. The datasets are satisfactorily classified, with performance measures over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99</mn><mo>.</mo><mn>9</mn><mo>%</mo></mrow></semantics></math></inline-formula> after using the proposed damage classification methodology.
topic structural health monitoring
principal component analysis
extreme gradient boosting
machine learning
classification
wind-turbine foundation
url https://www.mdpi.com/1424-8220/21/8/2748
work_keys_str_mv AT jerssonxleonmedina structuraldamageclassificationinajackettypewindturbinefoundationusingprincipalcomponentanalysisandextremegradientboosting
AT maribelanaya structuraldamageclassificationinajackettypewindturbinefoundationusingprincipalcomponentanalysisandextremegradientboosting
AT nuriapares structuraldamageclassificationinajackettypewindturbinefoundationusingprincipalcomponentanalysisandextremegradientboosting
AT diegoatibaduiza structuraldamageclassificationinajackettypewindturbinefoundationusingprincipalcomponentanalysisandextremegradientboosting
AT francescpozo structuraldamageclassificationinajackettypewindturbinefoundationusingprincipalcomponentanalysisandextremegradientboosting
_version_ 1721528181664514048