Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images
Canopy closure (CC) is an important parameter in forest ecosystems and has diverse applications in a wide variety of fields. Canopy closure estimation models, using a combination of measured data and remote sensing data, can largely replace traditional survey methods for CC. However, it is difficult...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Forests |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4907/11/5/597 |
id |
doaj-28d8b49b431b4e02baed90710e2411f6 |
---|---|
record_format |
Article |
spelling |
doaj-28d8b49b431b4e02baed90710e2411f62020-11-25T03:50:10ZengMDPI AGForests1999-49072020-05-011159759710.3390/f11050597Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing ImagesJiarui Li0Xuegang Mao1School of Forestry, Northeast Forestry University, Harbin 150040, ChinaSchool of Forestry, Northeast Forestry University, Harbin 150040, ChinaCanopy closure (CC) is an important parameter in forest ecosystems and has diverse applications in a wide variety of fields. Canopy closure estimation models, using a combination of measured data and remote sensing data, can largely replace traditional survey methods for CC. However, it is difficult to estimate the forest CC based on high spatial resolution remote sensing images. This study used China Gaofen-1 satellite (GF-1) images, and selected China’s north temperate Wangyedian Forest Farm (WYD) and subtropical Gaofeng Forest Farm (GF) as experimental areas. A parametric model (multiple linear regression (MLR)), non-parametric model (random forest (RF)), and semi-parametric model (generalized additive model (GAM)) were developed. The ability of the three models to estimate the CC of plantations based on high spatial resolution remote sensing GF-1 images and their performance in the two experimental areas was analyzed and compared. The results showed that the decision coefficient (<i>R</i><sup>2</sup>), root mean square error (RMSE), and relative root mean square error (rRMSE) values of the parametric model (MLR), semi-parametric model (GAM), and non-parametric model (RF) for the WYD forest ranged from 0.45 to 0.69, 0.0632 to 0.0953, and 9.98% to 15.05%, respectively, and in the GF forest the <i>R</i><sup>2</sup>, RMSE, and rRMSE values ranged from 0.40 to 0.59, 0.0967 to 0.1152, and 16.73% to 19.93%, respectively. The best model in the two study areas was the GAM and the worst was the RF. The accuracy of the three models established in the WYD was higher than that in the GF area. The RMSE and rRMSE values for the MLR, GAM, and RF established using high spatial resolution GF-1 remote sensing images in the two test areas were within the scope of existing studies, indicating the three CC estimation models achieved satisfactory results.https://www.mdpi.com/1999-4907/11/5/597canopy closuremultiple linear regression modelrandom forestgeneralized addictive modelGF-1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jiarui Li Xuegang Mao |
spellingShingle |
Jiarui Li Xuegang Mao Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images Forests canopy closure multiple linear regression model random forest generalized addictive model GF-1 |
author_facet |
Jiarui Li Xuegang Mao |
author_sort |
Jiarui Li |
title |
Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images |
title_short |
Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images |
title_full |
Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images |
title_fullStr |
Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images |
title_full_unstemmed |
Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images |
title_sort |
comparison of canopy closure estimation of plantations using parametric, semi-parametric, and non-parametric models based on gf-1 remote sensing images |
publisher |
MDPI AG |
series |
Forests |
issn |
1999-4907 |
publishDate |
2020-05-01 |
description |
Canopy closure (CC) is an important parameter in forest ecosystems and has diverse applications in a wide variety of fields. Canopy closure estimation models, using a combination of measured data and remote sensing data, can largely replace traditional survey methods for CC. However, it is difficult to estimate the forest CC based on high spatial resolution remote sensing images. This study used China Gaofen-1 satellite (GF-1) images, and selected China’s north temperate Wangyedian Forest Farm (WYD) and subtropical Gaofeng Forest Farm (GF) as experimental areas. A parametric model (multiple linear regression (MLR)), non-parametric model (random forest (RF)), and semi-parametric model (generalized additive model (GAM)) were developed. The ability of the three models to estimate the CC of plantations based on high spatial resolution remote sensing GF-1 images and their performance in the two experimental areas was analyzed and compared. The results showed that the decision coefficient (<i>R</i><sup>2</sup>), root mean square error (RMSE), and relative root mean square error (rRMSE) values of the parametric model (MLR), semi-parametric model (GAM), and non-parametric model (RF) for the WYD forest ranged from 0.45 to 0.69, 0.0632 to 0.0953, and 9.98% to 15.05%, respectively, and in the GF forest the <i>R</i><sup>2</sup>, RMSE, and rRMSE values ranged from 0.40 to 0.59, 0.0967 to 0.1152, and 16.73% to 19.93%, respectively. The best model in the two study areas was the GAM and the worst was the RF. The accuracy of the three models established in the WYD was higher than that in the GF area. The RMSE and rRMSE values for the MLR, GAM, and RF established using high spatial resolution GF-1 remote sensing images in the two test areas were within the scope of existing studies, indicating the three CC estimation models achieved satisfactory results. |
topic |
canopy closure multiple linear regression model random forest generalized addictive model GF-1 |
url |
https://www.mdpi.com/1999-4907/11/5/597 |
work_keys_str_mv |
AT jiaruili comparisonofcanopyclosureestimationofplantationsusingparametricsemiparametricandnonparametricmodelsbasedongf1remotesensingimages AT xuegangmao comparisonofcanopyclosureestimationofplantationsusingparametricsemiparametricandnonparametricmodelsbasedongf1remotesensingimages |
_version_ |
1724491907853189120 |