Structure of n-Lie Algebras with Involutive Derivations

We study the structure of n-Lie algebras with involutive derivations for n≥2. We obtain that a 3-Lie algebra A is a two-dimensional extension of Lie algebras if and only if there is an involutive derivation D on A=A1  ∔  A-1 such that dim A1=2 or dim A-1=2, where A1 and A-1 are subspaces of A with e...

Full description

Bibliographic Details
Main Authors: Ruipu Bai, Shuai Hou, Yansha Gao
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2018/7202141
Description
Summary:We study the structure of n-Lie algebras with involutive derivations for n≥2. We obtain that a 3-Lie algebra A is a two-dimensional extension of Lie algebras if and only if there is an involutive derivation D on A=A1  ∔  A-1 such that dim A1=2 or dim A-1=2, where A1 and A-1 are subspaces of A with eigenvalues 1 and -1, respectively. We show that there does not exist involutive derivations on nonabelian n-Lie algebras with n=2s for s≥1. We also prove that if A is a (2s+2)-dimensional (2s+1)-Lie algebra with dim A1=r, then there are involutive derivations on A if and only if r is even, or r satisfies 1≤r≤s+2. We discuss also the existence of involutive derivations on (2s+3)-dimensional (2s+1)-Lie algebras.
ISSN:0161-1712
1687-0425