Characterization of low cost orally disintegrating film (ODF)

Abstract Orally disintegrating films (ODF) produced with a hydrophilic polymers are a thin and flexible material, wich disintegrate in contact with saliva and can vehicule bioactive materials. The aim of this study was to develop and characterize ODF formulation with potential to act as a carrier fo...

Full description

Bibliographic Details
Main Authors: Riana Jordao Barrozo Heinemann, Fernanda Maria Vanin, Rosemary Aparecida de Carvalho, Marco Antonio Trindade, Carmen Sílvia Fávaro-Trindade
Format: Article
Language:English
Published: Associação Brasileira de Polímeros
Series:Polímeros
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282017000100048&lng=en&tlng=en
Description
Summary:Abstract Orally disintegrating films (ODF) produced with a hydrophilic polymers are a thin and flexible material, wich disintegrate in contact with saliva and can vehicule bioactive materials. The aim of this study was to develop and characterize ODF formulation with potential to act as a carrier for different bioactives compounds prepared with low cost polymers. Gelatin (G), starch (S), carboxymethyl cellulose (CMC) and their blends (G:S, CMC:S, CMC:G, and CMC:S:G) were prepared by casting technique with sorbitol as a plasticizer. The formulations were characterized in terms of visual aspects, FTIR, SEM, mechanical characteristics, hygroscopicity, dissolution (in vitro and in vivo) and swelling index. FTIR analysis revealed that no interaction between polymers in ODF was observed. By SEM, it was possible to observe differences on surfaces by different polymers. ODF made with CMC and CMC:G presented higher water absorption (P<0.05) and higher swelling index probably due to the higher water affinity by CMC. Formulations with G, CMC:G and CMC:S:G presented the highest values of tensile strength (P<0.05). ODF prepared with S alone presented the highest disintegration time, the others formulations showed in vitro dissolution ranging from 5.22 to 8.50 min, while in vivo dissolution time ranged from 2.15 to 3.38 min. By the formulations made with G and blend of G:S and CMC:S:G it is possible to develop a ODF of low cost with desired characteristics being an alternative vehicle to deliver functional compounds for continuous use.
ISSN:1678-5169