Caspase-14 Expression Impairs Retinal Pigment Epithelium Barrier Function: Potential Role in Diabetic Macular Edema

We recently showed that caspase-14 is a novel molecule in retina with potential role in accelerated vascular cell death during diabetic retinopathy (DR). Here, we evaluated whether caspase-14 is implicated in retinal pigment epithelial cells (RPE) dysfunction under hyperglycemia. The impact of high...

Full description

Bibliographic Details
Main Authors: Selina Beasley, Mohamed El-Sherbiny, Sylvia Megyerdi, Sally El-Shafey, Karishma Choksi, Ismail Kaddour-Djebbar, Nader Sheibani, Stephen Hsu, Mohamed Al-Shabrawey
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2014/417986
Description
Summary:We recently showed that caspase-14 is a novel molecule in retina with potential role in accelerated vascular cell death during diabetic retinopathy (DR). Here, we evaluated whether caspase-14 is implicated in retinal pigment epithelial cells (RPE) dysfunction under hyperglycemia. The impact of high glucose (HG, 30 mM D-glucose) on caspase-14 expression in human RPE (ARPE-19) cells was tested, which showed significant increase in caspase-14 expression compared with normal glucose (5 mM D-glucose + 25 mM L-glucose). We also evaluated the impact of modulating caspase-14 expression on RPE cells barrier function, phagocytosis, and activation of other caspases using ARPE-19 cells transfected with caspase-14 plasmid or caspase-14 siRNA. We used FITC-dextran flux assay and electric cell substrate impedance sensing (ECIS) to test the changes in RPE cell barrier function. Similar to HG, caspase-14 expression in ARPE-19 cells increased FITC-dextran leakage through the confluent monolayer and decreased the transcellular electrical resistance (TER). These effects of HG were prevented by caspase-14 knockdown. Furthermore, caspase-14 knockdown prevented the HG-induced activation of caspase-1 and caspase-9, the only activated caspases by HG. Phagocytic activity was unaffected by caspase-14 expression. Our results suggest that caspase-14 contributes to RPE cell barrier disruption under hyperglycemic conditions and thus plays a role in the development of diabetic macular edema.
ISSN:2314-6133
2314-6141