Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?

<p>To evaluate the geospatial hazard relationships between recent (contemporary) rockfalls and their prehistoric predecessors, we compare the locations, physical characteristics, and lithologies of rockfall boulders deposited during the 2010–2011 Canterbury earthquake sequence (CES) (<span...

Full description

Bibliographic Details
Main Authors: J. Borella, M. Quigley, Z. Krauss, K. Lincoln, J. Attanayake, L. Stamp, H. Lanman, S. Levine, S. Hampton, D. Gravley
Format: Article
Language:English
Published: Copernicus Publications 2019-10-01
Series:Natural Hazards and Earth System Sciences
Online Access:https://www.nat-hazards-earth-syst-sci.net/19/2249/2019/nhess-19-2249-2019.pdf
id doaj-288a82c601704510aa242a99db2eae74
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author J. Borella
J. Borella
M. Quigley
M. Quigley
Z. Krauss
Z. Krauss
K. Lincoln
K. Lincoln
J. Attanayake
L. Stamp
L. Stamp
H. Lanman
H. Lanman
S. Levine
S. Levine
S. Hampton
S. Hampton
D. Gravley
D. Gravley
spellingShingle J. Borella
J. Borella
M. Quigley
M. Quigley
Z. Krauss
Z. Krauss
K. Lincoln
K. Lincoln
J. Attanayake
L. Stamp
L. Stamp
H. Lanman
H. Lanman
S. Levine
S. Levine
S. Hampton
S. Hampton
D. Gravley
D. Gravley
Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?
Natural Hazards and Earth System Sciences
author_facet J. Borella
J. Borella
M. Quigley
M. Quigley
Z. Krauss
Z. Krauss
K. Lincoln
K. Lincoln
J. Attanayake
L. Stamp
L. Stamp
H. Lanman
H. Lanman
S. Levine
S. Levine
S. Hampton
S. Hampton
D. Gravley
D. Gravley
author_sort J. Borella
title Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?
title_short Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?
title_full Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?
title_fullStr Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?
title_full_unstemmed Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?
title_sort geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?
publisher Copernicus Publications
series Natural Hazards and Earth System Sciences
issn 1561-8633
1684-9981
publishDate 2019-10-01
description <p>To evaluate the geospatial hazard relationships between recent (contemporary) rockfalls and their prehistoric predecessors, we compare the locations, physical characteristics, and lithologies of rockfall boulders deposited during the 2010–2011 Canterbury earthquake sequence (CES) (<span class="inline-formula"><i>n</i>=185</span>) with those deposited prior to the CES (<span class="inline-formula"><i>n</i>=1093</span>). Population ratios of pre-CES to CES boulders at two study sites vary spatially from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">5</mn><mo>:</mo><mn mathvariant="normal">1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c7e47b7291f8e794b00b2491b5667a03"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-19-2249-2019-ie00001.svg" width="32pt" height="10pt" src="nhess-19-2249-2019-ie00001.png"/></svg:svg></span></span> to <span class="inline-formula">8.5:1</span>. This is interpreted to reflect (i) variations in CES rockfall flux due to intra- and inter-event spatial differences in ground motions (e.g., directionality) and associated variations in source cliff responses; (ii) possible variations in the triggering mechanism(s), frequency, flux, record duration, boulder size distributions, and post-depositional mobilization of pre-CES rockfalls relative to CES rockfalls; and (iii) geological variations in the source cliffs of CES and pre-CES rockfalls. On interfluves, CES boulders traveled approximately 100 to 250&thinsp;m further downslope than prehistoric (pre-CES) boulders. This is interpreted to reflect reduced resistance to CES rockfall transport due to preceding anthropogenic hillslope de-vegetation. Volcanic breccia boulders are more dimensionally equant and rounded, are larger, and traveled further downslope than coherent lava boulders, illustrating clear geological control on rockfall hazard. In valley bottoms, the furthest-traveled pre-CES boulders are situated further downslope than CES boulders due to (i) remobilization of pre-CES boulders by post-depositional processes such as debris flows and (ii) reduction of CES boulder velocities and travel distances by collisional impacts with pre-CES boulders. A considered earth-systems approach is required when using preserved distributions of rockfall deposits to predict the severity and extents of future rockfall events.</p>
url https://www.nat-hazards-earth-syst-sci.net/19/2249/2019/nhess-19-2249-2019.pdf
work_keys_str_mv AT jborella geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT jborella geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT mquigley geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT mquigley geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT zkrauss geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT zkrauss geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT klincoln geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT klincoln geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT jattanayake geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT lstamp geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT lstamp geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT hlanman geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT hlanman geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT slevine geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT slevine geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT shampton geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT shampton geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT dgravley geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
AT dgravley geologicandgeomorphiccontrolsonrockfallhazardhowwelldopastrockfallspredictfuturedistributions
_version_ 1725153375703531520
spelling doaj-288a82c601704510aa242a99db2eae742020-11-25T01:15:25ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812019-10-01192249228010.5194/nhess-19-2249-2019Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions?J. Borella0J. Borella1M. Quigley2M. Quigley3Z. Krauss4Z. Krauss5K. Lincoln6K. Lincoln7J. Attanayake8L. Stamp9L. Stamp10H. Lanman11H. Lanman12S. Levine13S. Levine14S. Hampton15S. Hampton16D. Gravley17D. Gravley18Frontiers Abroad, 3 Harbour View Terrace, Christchurch, 8082, New ZealandDepartment of Geological Sciences, University of Canterbury, Christchurch, 8041, New ZealandDepartment of Geological Sciences, University of Canterbury, Christchurch, 8041, New ZealandSchool of Earth Sciences, The University of Melbourne, Victoria, 3010, AustraliaFrontiers Abroad, 3 Harbour View Terrace, Christchurch, 8082, New ZealandDepartment of Geology, Colorado College, Colorado Springs, CO 80903, USAFrontiers Abroad, 3 Harbour View Terrace, Christchurch, 8082, New ZealandDepartment of Geosciences, Williams College, Williamstown, MA 01267, USASchool of Earth Sciences, The University of Melbourne, Victoria, 3010, AustraliaFrontiers Abroad, 3 Harbour View Terrace, Christchurch, 8082, New ZealandDepartment of Geosciences, Williams College, Williamstown, MA 01267, USAFrontiers Abroad, 3 Harbour View Terrace, Christchurch, 8082, New ZealandDepartment of Geology, Whitman College, Walla Walla, WA 99362, USAFrontiers Abroad, 3 Harbour View Terrace, Christchurch, 8082, New ZealandDepartment of Geology, Carleton College, Northfield, MN 55057, USAFrontiers Abroad, 3 Harbour View Terrace, Christchurch, 8082, New ZealandDepartment of Geological Sciences, University of Canterbury, Christchurch, 8041, New ZealandFrontiers Abroad, 3 Harbour View Terrace, Christchurch, 8082, New ZealandDepartment of Geological Sciences, University of Canterbury, Christchurch, 8041, New Zealand<p>To evaluate the geospatial hazard relationships between recent (contemporary) rockfalls and their prehistoric predecessors, we compare the locations, physical characteristics, and lithologies of rockfall boulders deposited during the 2010–2011 Canterbury earthquake sequence (CES) (<span class="inline-formula"><i>n</i>=185</span>) with those deposited prior to the CES (<span class="inline-formula"><i>n</i>=1093</span>). Population ratios of pre-CES to CES boulders at two study sites vary spatially from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">5</mn><mo>:</mo><mn mathvariant="normal">1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c7e47b7291f8e794b00b2491b5667a03"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-19-2249-2019-ie00001.svg" width="32pt" height="10pt" src="nhess-19-2249-2019-ie00001.png"/></svg:svg></span></span> to <span class="inline-formula">8.5:1</span>. This is interpreted to reflect (i) variations in CES rockfall flux due to intra- and inter-event spatial differences in ground motions (e.g., directionality) and associated variations in source cliff responses; (ii) possible variations in the triggering mechanism(s), frequency, flux, record duration, boulder size distributions, and post-depositional mobilization of pre-CES rockfalls relative to CES rockfalls; and (iii) geological variations in the source cliffs of CES and pre-CES rockfalls. On interfluves, CES boulders traveled approximately 100 to 250&thinsp;m further downslope than prehistoric (pre-CES) boulders. This is interpreted to reflect reduced resistance to CES rockfall transport due to preceding anthropogenic hillslope de-vegetation. Volcanic breccia boulders are more dimensionally equant and rounded, are larger, and traveled further downslope than coherent lava boulders, illustrating clear geological control on rockfall hazard. In valley bottoms, the furthest-traveled pre-CES boulders are situated further downslope than CES boulders due to (i) remobilization of pre-CES boulders by post-depositional processes such as debris flows and (ii) reduction of CES boulder velocities and travel distances by collisional impacts with pre-CES boulders. A considered earth-systems approach is required when using preserved distributions of rockfall deposits to predict the severity and extents of future rockfall events.</p>https://www.nat-hazards-earth-syst-sci.net/19/2249/2019/nhess-19-2249-2019.pdf