Integrase-Defective Lentiviral Vectors for Delivery of Monoclonal Antibodies against Influenza

Delivering rapid protection against infectious agents to non-immune populations is a formidable public health challenge. Although passive immunotherapy is a fast and effective method of protection, large-scale production and administration of monoclonal antibodies (mAbs) is expensive and unpractical...

Full description

Bibliographic Details
Main Authors: Zuleika Michelini, Judith M. Minkoff, Jianjun Yang, Donatella Negri, Andrea Cara, Brendon J. Hanson, Mirella Salvatore
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Viruses
Subjects:
Online Access:https://www.mdpi.com/1999-4915/12/12/1460
Description
Summary:Delivering rapid protection against infectious agents to non-immune populations is a formidable public health challenge. Although passive immunotherapy is a fast and effective method of protection, large-scale production and administration of monoclonal antibodies (mAbs) is expensive and unpractical. Viral vector-mediated delivery of mAbs offers an attractive alternative to their direct injection. Integrase-defective lentiviral vectors (IDLV) are advantageous for this purpose due to the absence of pre-existing anti-vector immunity and the safety features of non-integration and non-replication. We engineered IDLV to produce the humanized mAb VN04-2 (IDLV-VN04-2), which is broadly neutralizing against H5 influenza A virus (IAV), and tested the vectors’ ability to produce antibodies and protect from IAV in vivo. We found that IDLV-transduced cells produced functional VN04-2 mAbs in a time- and dose-dependent fashion. These mAbs specifically bind the hemagglutinin (HA), but not the nucleoprotein (NP) of IAV. VN04-2 mAbs were detected in the serum of mice at different times after intranasal (i.n.) or intramuscular (i.m.) administration of IDLV-VN04-2. Administration of IDLV-VN04-2 by the i.n. route provided rapid protection against lethal IAV challenge, although the protection did not persist at later time points. Our data suggest that administration of mAb-expressing IDLV may represent an effective strategy for rapid protection against infectious diseases.
ISSN:1999-4915