MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-06-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-23774-w |
id |
doaj-288469ae1b8548578e585c76f18caf41 |
---|---|
record_format |
Article |
spelling |
doaj-288469ae1b8548578e585c76f18caf412021-06-13T11:16:10ZengNature Publishing GroupNature Communications2041-17232021-06-0112111310.1038/s41467-021-23774-wMOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identificationTongxin Wang0Wei Shao1Zhi Huang2Haixu Tang3Jie Zhang4Zhengming Ding5Kun Huang6Department of Computer Science, Indiana University BloomingtonDepartment of Medicine, Indiana University School of MedicineDepartment of Medicine, Indiana University School of MedicineDepartment of Computer Science, Indiana University BloomingtonDepartment of Medical and Molecular Genetics, Indiana University School of MedicineDepartment of Computer Science, Tulane UniversityDepartment of Medicine, Indiana University School of MedicineOur understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.https://doi.org/10.1038/s41467-021-23774-w |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tongxin Wang Wei Shao Zhi Huang Haixu Tang Jie Zhang Zhengming Ding Kun Huang |
spellingShingle |
Tongxin Wang Wei Shao Zhi Huang Haixu Tang Jie Zhang Zhengming Ding Kun Huang MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification Nature Communications |
author_facet |
Tongxin Wang Wei Shao Zhi Huang Haixu Tang Jie Zhang Zhengming Ding Kun Huang |
author_sort |
Tongxin Wang |
title |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_short |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_full |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_fullStr |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_full_unstemmed |
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
title_sort |
mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2021-06-01 |
description |
Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers. |
url |
https://doi.org/10.1038/s41467-021-23774-w |
work_keys_str_mv |
AT tongxinwang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT weishao mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT zhihuang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT haixutang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT jiezhang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT zhengmingding mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification AT kunhuang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification |
_version_ |
1721379993305481216 |