MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification

Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.

Bibliographic Details
Main Authors: Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, Kun Huang
Format: Article
Language:English
Published: Nature Publishing Group 2021-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-23774-w
id doaj-288469ae1b8548578e585c76f18caf41
record_format Article
spelling doaj-288469ae1b8548578e585c76f18caf412021-06-13T11:16:10ZengNature Publishing GroupNature Communications2041-17232021-06-0112111310.1038/s41467-021-23774-wMOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identificationTongxin Wang0Wei Shao1Zhi Huang2Haixu Tang3Jie Zhang4Zhengming Ding5Kun Huang6Department of Computer Science, Indiana University BloomingtonDepartment of Medicine, Indiana University School of MedicineDepartment of Medicine, Indiana University School of MedicineDepartment of Computer Science, Indiana University BloomingtonDepartment of Medical and Molecular Genetics, Indiana University School of MedicineDepartment of Computer Science, Tulane UniversityDepartment of Medicine, Indiana University School of MedicineOur understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.https://doi.org/10.1038/s41467-021-23774-w
collection DOAJ
language English
format Article
sources DOAJ
author Tongxin Wang
Wei Shao
Zhi Huang
Haixu Tang
Jie Zhang
Zhengming Ding
Kun Huang
spellingShingle Tongxin Wang
Wei Shao
Zhi Huang
Haixu Tang
Jie Zhang
Zhengming Ding
Kun Huang
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
Nature Communications
author_facet Tongxin Wang
Wei Shao
Zhi Huang
Haixu Tang
Jie Zhang
Zhengming Ding
Kun Huang
author_sort Tongxin Wang
title MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_short MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_full MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_fullStr MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_full_unstemmed MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
title_sort mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-06-01
description Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.
url https://doi.org/10.1038/s41467-021-23774-w
work_keys_str_mv AT tongxinwang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT weishao mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT zhihuang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT haixutang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT jiezhang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT zhengmingding mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
AT kunhuang mogonetintegratesmultiomicsdatausinggraphconvolutionalnetworksallowingpatientclassificationandbiomarkeridentification
_version_ 1721379993305481216