Summary: | The unpredictable situation from the Coronavirus (COVID-19) globally and the severity of the third wave has resulted in the entire world being quarantined from one another again. Self-quarantine is the only existing solution to stop the spread of the virus when vaccination is under trials. Due to COVID-19, individuals may have difficulties in breathing and may experience cognitive impairment, which results in physical and psychological health issues. Healthcare professionals are doing their best to treat the patients at risk to their health. It is important to develop innovative solutions to provide non-contact and remote assistance to reduce the spread of the virus and to provide better care to patients. In addition, such assistance is important for elderly and those that are already sick in order to provide timely medical assistance and to reduce false alarm/visits to the hospitals. This research aims to provide an innovative solution by remotely monitoring vital signs such as breathing and other connected health during the quarantine. We develop an innovative solution for connected health using software-defined radio (SDR) technology and artificial intelligence (AI). The channel frequency response (CFR) is used to extract the fine-grained wireless channel state information (WCSI) by using the multi-carrier orthogonal frequency division multiplexing (OFDM) technique. The design was validated by simulated channels by analyzing CFR for ideal, additive white gaussian noise (AWGN), fading, and dispersive channels. Finally, various breathing experiments are conducted and the results are illustrated as having classification accuracy of 99.3% for four different breathing patterns using machine learning algorithms. This platform allows medical professionals and caretakers to remotely monitor individuals in a non-contact manner. The developed platform is suitable for both COVID-19 and non-COVID-19 scenarios.
|