Test of quantum atmosphere in the dimensionally reduced Schwarzschild black hole

It has been suggested by Giddings that the origin of Hawking radiation in black holes is a quantum atmosphere of near-horizon quantum region by investigating both the total emission rate and the stress tensor of Hawking radiation. Revisiting this issue in the exactly soluble model of a dimensionally...

Full description

Bibliographic Details
Main Authors: Myungseok Eune, Wontae Kim
Format: Article
Language:English
Published: Elsevier 2019-11-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269319307427
Description
Summary:It has been suggested by Giddings that the origin of Hawking radiation in black holes is a quantum atmosphere of near-horizon quantum region by investigating both the total emission rate and the stress tensor of Hawking radiation. Revisiting this issue in the exactly soluble model of a dimensionally reduced Schwarzschild black hole, we shall confirm that the dominant Hawking radiation in the Unruh vacuum indeed occurs at the quantum atmosphere, not just at the horizon by exactly calculating the out-temperature responsible for outgoing Hawking particle excitations. Consequently we show that the out-temperature vanishes at the horizon and has a peak at a scale whose radial extent is set by the horizon radius, and then decreases to the Hawking temperature at infinity. We also discuss bounds of location of the peak for the out-temperature in our model. Keywords: Hawking temperature, Stefan-Boltzmann law, Tolman temperature, Hartle-Hawking vacuum, Unruh vacuum
ISSN:0370-2693