Existence of a Period-Two Solution in Linearizable Difference Equations
Consider the difference equation xn+1=f(xn,…,xn−k),n=0,1,…, where k∈{1,2,…} and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equation xn+l=∑i=1−lkgixn−i,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2013/421545 |
id |
doaj-281f86c4d29448ccbc2acb4b4151b0f3 |
---|---|
record_format |
Article |
spelling |
doaj-281f86c4d29448ccbc2acb4b4151b0f32020-11-25T00:51:45ZengHindawi LimitedDiscrete Dynamics in Nature and Society1026-02261607-887X2013-01-01201310.1155/2013/421545421545Existence of a Period-Two Solution in Linearizable Difference EquationsE. J. Janowski0M. R. S. Kulenović1Department of Mathematics, University of Rhode Island, Kingston, RI 02881-0816, USADepartment of Mathematics, University of Rhode Island, Kingston, RI 02881-0816, USAConsider the difference equation xn+1=f(xn,…,xn−k),n=0,1,…, where k∈{1,2,…} and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equation xn+l=∑i=1−lkgixn−i, n=0,1,…, where l,k∈{1,2,…} and the functions gi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution when l=1.http://dx.doi.org/10.1155/2013/421545 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
E. J. Janowski M. R. S. Kulenović |
spellingShingle |
E. J. Janowski M. R. S. Kulenović Existence of a Period-Two Solution in Linearizable Difference Equations Discrete Dynamics in Nature and Society |
author_facet |
E. J. Janowski M. R. S. Kulenović |
author_sort |
E. J. Janowski |
title |
Existence of a Period-Two Solution in Linearizable Difference Equations |
title_short |
Existence of a Period-Two Solution in Linearizable Difference Equations |
title_full |
Existence of a Period-Two Solution in Linearizable Difference Equations |
title_fullStr |
Existence of a Period-Two Solution in Linearizable Difference Equations |
title_full_unstemmed |
Existence of a Period-Two Solution in Linearizable Difference Equations |
title_sort |
existence of a period-two solution in linearizable difference equations |
publisher |
Hindawi Limited |
series |
Discrete Dynamics in Nature and Society |
issn |
1026-0226 1607-887X |
publishDate |
2013-01-01 |
description |
Consider the difference equation xn+1=f(xn,…,xn−k),n=0,1,…, where k∈{1,2,…} and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equation xn+l=∑i=1−lkgixn−i, n=0,1,…, where l,k∈{1,2,…} and the functions gi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution when l=1. |
url |
http://dx.doi.org/10.1155/2013/421545 |
work_keys_str_mv |
AT ejjanowski existenceofaperiodtwosolutioninlinearizabledifferenceequations AT mrskulenovic existenceofaperiodtwosolutioninlinearizabledifferenceequations |
_version_ |
1725244055224320000 |