The Spatiotemporal Dynamics of Forest–Heathland Communities over 60 Years in Fontainebleau, France

According to the EU Habitats Directive, heathlands are “natural habitats of community interest”. Heathland management aims at conserving these habitats threatened by various changes, including successional processes leading to forest vegetation. We investigate the dynamics of woody species to the de...

Full description

Bibliographic Details
Main Authors: Samira Mobaied, Nathalie Machon, Arnault Lalanne, Bernard Riera
Format: Article
Language:English
Published: MDPI AG 2015-06-01
Series:ISPRS International Journal of Geo-Information
Subjects:
GIS
Online Access:http://www.mdpi.com/2220-9964/4/2/957
Description
Summary:According to the EU Habitats Directive, heathlands are “natural habitats of community interest”. Heathland management aims at conserving these habitats threatened by various changes, including successional processes leading to forest vegetation. We investigate the dynamics of woody species to the detriment of heathland over a period of 60 years in the Fontainebleau forest and we examine the effects of soil types, soil depth and topography parameters on heathland stability. We assess changes in forest cover between 1946 and 2003 by comparing vegetation maps derived from aerial photographs coupled to GIS analyses. The results show the loss of more than 75% of heathland during 1946–2003 due to tree colonisation of abandoned heathland. We detected differences in the dynamics of colonisation between coniferous and deciduous trees. The colonisation of heathland by coniferous species was faster over the last 20 years of our study period. Tree encroachment was faster in north-facing areas and in areas of acidic luvisols. While this dynamic was very slow in acid sandstone soils, heathland stability was more important in shallow soils on flat and south facing areas. Our study has the potential to assist land managers in selecting those heathland areas that will be easier to conserve and/or to restore by focusing on areas and spatial conditions that prevent forest colonisation and hence favour the long-term stability of heathland.
ISSN:2220-9964