Remote Sensing Monitoring of Soil Moisture in the Daliuta Coal Mine Based on SPOT 5/6 and Worldview-2

To understand the influence of underground mining disturbances on the shallow soil moisture in the Daliuta coal mine, remote sensing monitoring of the temporal and spatial evolution of surface soil moisture and the influence of mining on multi-source, multi-temporal and high spatial resolution remot...

Full description

Bibliographic Details
Main Authors: Liu Ying, Yue Hui
Format: Article
Language:English
Published: De Gruyter 2019-12-01
Series:Open Geosciences
Subjects:
Online Access:https://doi.org/10.1515/geo-2019-0067
Description
Summary:To understand the influence of underground mining disturbances on the shallow soil moisture in the Daliuta coal mine, remote sensing monitoring of the temporal and spatial evolution of surface soil moisture and the influence of mining on multi-source, multi-temporal and high spatial resolution remote sensing data were carried out. The scale effect of monitoring the soil moisture at different scales was analyzed using the Scaled Soil Moisture Monitor Index (S-SMMI). In this paper, SPOT 5/6 and Worldview-2 were used as the data source and mainly made up two aspects of the research: 1) based on the three SPOT data sets with the use of S-SMMI from different angles from the Daliuta mine from nearly three years of soil moisture temporal and spatial changes, the results show that the perturbation has a negative effect on the shallow soil moisture in the Daliuta coal mine, and average soil moisture of the mining area is smaller than the non-mining area, but the surface ecological construction has effectively improved the impact of the underground mining disturbance on the surface soil moisture. 2) the scale conversion of Worldview-2 data was carried out based on the resampling method. S-SMMI was used to analyze the scale effect of soil moisture monitoring at different scales. The results show that the difference between the soil moisture is only 0.0016 during the conversion process of 2 m-30 m.
ISSN:2391-5447