Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at Xianghe, China

<p>In this study, we present <span class="inline-formula">O<sub>3</sub></span> retrievals from ground-based Fourier transform infrared (FTIR) solar absorption measurements between June 2018 and December 2019 at Xianghe, China (39.75<span class="inline-...

Full description

Bibliographic Details
Main Authors: M. Zhou, P. Wang, B. Langerock, C. Vigouroux, C. Hermans, N. Kumps, T. Wang, Y. Yang, D. Ji, L. Ran, J. Zhang, Y. Xuan, H. Chen, F. Posny, V. Duflot, J.-M. Metzger, M. De Mazière
Format: Article
Language:English
Published: Copernicus Publications 2020-10-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/13/5379/2020/amt-13-5379-2020.pdf
id doaj-27ed00357dc54ee09b4821f1ba1882fe
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author M. Zhou
P. Wang
P. Wang
P. Wang
B. Langerock
C. Vigouroux
C. Hermans
N. Kumps
T. Wang
Y. Yang
D. Ji
L. Ran
J. Zhang
Y. Xuan
H. Chen
H. Chen
H. Chen
F. Posny
V. Duflot
V. Duflot
J.-M. Metzger
M. De Mazière
spellingShingle M. Zhou
P. Wang
P. Wang
P. Wang
B. Langerock
C. Vigouroux
C. Hermans
N. Kumps
T. Wang
Y. Yang
D. Ji
L. Ran
J. Zhang
Y. Xuan
H. Chen
H. Chen
H. Chen
F. Posny
V. Duflot
V. Duflot
J.-M. Metzger
M. De Mazière
Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at Xianghe, China
Atmospheric Measurement Techniques
author_facet M. Zhou
P. Wang
P. Wang
P. Wang
B. Langerock
C. Vigouroux
C. Hermans
N. Kumps
T. Wang
Y. Yang
D. Ji
L. Ran
J. Zhang
Y. Xuan
H. Chen
H. Chen
H. Chen
F. Posny
V. Duflot
V. Duflot
J.-M. Metzger
M. De Mazière
author_sort M. Zhou
title Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at Xianghe, China
title_short Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at Xianghe, China
title_full Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at Xianghe, China
title_fullStr Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at Xianghe, China
title_full_unstemmed Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at Xianghe, China
title_sort ground-based fourier transform infrared (ftir) o<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at xianghe, china
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2020-10-01
description <p>In this study, we present <span class="inline-formula">O<sub>3</sub></span> retrievals from ground-based Fourier transform infrared (FTIR) solar absorption measurements between June 2018 and December 2019 at Xianghe, China (39.75<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 116.96<span class="inline-formula"><sup>∘</sup></span>&thinsp;E). The FTIR spectrometer at Xianghe is operated with indium gallium arsenide (InGaAs) and indium antimonide (InSb) detectors, recording the spectra between 1800 and 11&thinsp;000&thinsp;cm<span class="inline-formula"><sup>−1</sup></span>. As the harmonized FTIR <span class="inline-formula">O<sub>3</sub></span> retrieval strategy <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx39">Vigouroux et al.</a>, <a href="#bib1.bibx39">2015</a>)</span> within the Network for the Detection of Atmospheric Composition Change (NDACC) uses the 1000&thinsp;cm<span class="inline-formula"><sup>−1</sup></span> spectral range, we apply the <span class="inline-formula">O<sub>3</sub></span> retrieval in the 3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span> spectral range at Xianghe.</p> <p>The retrieved <span class="inline-formula">O<sub>3</sub></span> profile is mainly sensitive to the vertical range between 10 and 40&thinsp;km, and the degrees of freedom for signal is <span class="inline-formula">2.4±0.3</span> (<span class="inline-formula">1<i>σ</i></span>), indicating that there are two individual pieces of information in partial columns between the surface and 20&thinsp;km and between 20 and 40&thinsp;km. According to the optimal estimation method, the systematic and random uncertainties of the FTIR <span class="inline-formula">O<sub>3</sub></span> total columns are about 13.6&thinsp;% and 1.4&thinsp;%, respectively. The random uncertainty is consistent with the observed daily standard deviation of the FTIR retrievals.</p> <p>To validate the FTIR <span class="inline-formula">O<sub>3</sub></span> total and partial columns, we apply the same <span class="inline-formula">O<sub>3</sub></span> retrieval strategy at Maïdo, Réunion (a.k.a. Reunion Island; 21.08<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 55.38<span class="inline-formula"><sup>∘</sup></span>&thinsp;E). The FTIR <span class="inline-formula">O<sub>3</sub></span> (3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span>) measurements at Xianghe and Maïdo are then compared with the nearby ozonesondes at Beijing (39.81<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 116.47<span class="inline-formula"><sup>∘</sup></span>&thinsp;E) and at Gillot (20.89<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, 55.53<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), respectively, as well as with co-located TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements at both sites. In addition at Maïdo, we compare the FTIR <span class="inline-formula">O<sub>3</sub></span> (3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span>) retrievals with the standard NDACC FTIR <span class="inline-formula">O<sub>3</sub></span> measurements using the 1000&thinsp;cm<span class="inline-formula"><sup>−1</sup></span> spectral range. It was found that the total columns retrieved from the FTIR <span class="inline-formula">O<sub>3</sub></span> 3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span> measurements are underestimated by 5.5&thinsp;%–9.0&thinsp;%, which is mainly due to the systematic uncertainty in the partial column between 20 and 40&thinsp;km (about <span class="inline-formula">−10.4</span>&thinsp;%). The systematic uncertainty in the partial column between surface and 20&thinsp;km is relatively small (within 2.4&thinsp;%). By comparison with other measurements, it was found that the FTIR <span class="inline-formula">O<sub>3</sub></span> (3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span>) retrievals capture the seasonal and synoptic variations of the <span class="inline-formula">O<sub>3</sub></span> total and two partial columns very well. Therefore, the ongoing FTIR measurements at Xianghe can provide useful information on the <span class="inline-formula">O<sub>3</sub></span> variations and (in the future) long-term trends.</p>
url https://amt.copernicus.org/articles/13/5379/2020/amt-13-5379-2020.pdf
work_keys_str_mv AT mzhou groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT pwang groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT pwang groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT pwang groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT blangerock groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT cvigouroux groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT chermans groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT nkumps groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT twang groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT yyang groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT dji groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT lran groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT jzhang groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT yxuan groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT hchen groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT hchen groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT hchen groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT fposny groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT vduflot groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT vduflot groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT jmmetzger groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
AT mdemaziere groundbasedfouriertransforminfraredftirosub3subretrievalsfromthe3040thinspcmsup1supspectralrangeatxianghechina
_version_ 1724479007803572224
spelling doaj-27ed00357dc54ee09b4821f1ba1882fe2020-11-25T03:53:16ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-10-01135379539410.5194/amt-13-5379-2020Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040&thinsp;cm<sup>−1</sup> spectral range at Xianghe, ChinaM. Zhou0P. Wang1P. Wang2P. Wang3B. Langerock4C. Vigouroux5C. Hermans6N. Kumps7T. Wang8Y. Yang9D. Ji10L. Ran11J. Zhang12Y. Xuan13H. Chen14H. Chen15H. Chen16F. Posny17V. Duflot18V. Duflot19J.-M. Metzger20M. De Mazière21Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaCollege of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, ChinaXianghe Observatory of Whole Atmosphere, Institute of Atmospheric Physics, Chinese Academy of Sciences, Xianghe, ChinaRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, BelgiumKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaCollege of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, ChinaXianghe Observatory of Whole Atmosphere, Institute of Atmospheric Physics, Chinese Academy of Sciences, Xianghe, ChinaLACy, Laboratoire de l'Atmosphère et des Cyclones, UMR8105 (CNRS, Université de La Réunion, Météo-France), Saint-Denis, Réunion, FranceLACy, Laboratoire de l'Atmosphère et des Cyclones, UMR8105 (CNRS, Université de La Réunion, Météo-France), Saint-Denis, Réunion, FranceUMS 3365 – OSU Réunion, Université de La Réunion, Saint-Denis, Réunion, FranceUMS 3365 – OSU Réunion, Université de La Réunion, Saint-Denis, Réunion, FranceRoyal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium<p>In this study, we present <span class="inline-formula">O<sub>3</sub></span> retrievals from ground-based Fourier transform infrared (FTIR) solar absorption measurements between June 2018 and December 2019 at Xianghe, China (39.75<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 116.96<span class="inline-formula"><sup>∘</sup></span>&thinsp;E). The FTIR spectrometer at Xianghe is operated with indium gallium arsenide (InGaAs) and indium antimonide (InSb) detectors, recording the spectra between 1800 and 11&thinsp;000&thinsp;cm<span class="inline-formula"><sup>−1</sup></span>. As the harmonized FTIR <span class="inline-formula">O<sub>3</sub></span> retrieval strategy <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx39">Vigouroux et al.</a>, <a href="#bib1.bibx39">2015</a>)</span> within the Network for the Detection of Atmospheric Composition Change (NDACC) uses the 1000&thinsp;cm<span class="inline-formula"><sup>−1</sup></span> spectral range, we apply the <span class="inline-formula">O<sub>3</sub></span> retrieval in the 3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span> spectral range at Xianghe.</p> <p>The retrieved <span class="inline-formula">O<sub>3</sub></span> profile is mainly sensitive to the vertical range between 10 and 40&thinsp;km, and the degrees of freedom for signal is <span class="inline-formula">2.4±0.3</span> (<span class="inline-formula">1<i>σ</i></span>), indicating that there are two individual pieces of information in partial columns between the surface and 20&thinsp;km and between 20 and 40&thinsp;km. According to the optimal estimation method, the systematic and random uncertainties of the FTIR <span class="inline-formula">O<sub>3</sub></span> total columns are about 13.6&thinsp;% and 1.4&thinsp;%, respectively. The random uncertainty is consistent with the observed daily standard deviation of the FTIR retrievals.</p> <p>To validate the FTIR <span class="inline-formula">O<sub>3</sub></span> total and partial columns, we apply the same <span class="inline-formula">O<sub>3</sub></span> retrieval strategy at Maïdo, Réunion (a.k.a. Reunion Island; 21.08<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 55.38<span class="inline-formula"><sup>∘</sup></span>&thinsp;E). The FTIR <span class="inline-formula">O<sub>3</sub></span> (3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span>) measurements at Xianghe and Maïdo are then compared with the nearby ozonesondes at Beijing (39.81<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 116.47<span class="inline-formula"><sup>∘</sup></span>&thinsp;E) and at Gillot (20.89<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, 55.53<span class="inline-formula"><sup>∘</sup></span>&thinsp;E), respectively, as well as with co-located TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements at both sites. In addition at Maïdo, we compare the FTIR <span class="inline-formula">O<sub>3</sub></span> (3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span>) retrievals with the standard NDACC FTIR <span class="inline-formula">O<sub>3</sub></span> measurements using the 1000&thinsp;cm<span class="inline-formula"><sup>−1</sup></span> spectral range. It was found that the total columns retrieved from the FTIR <span class="inline-formula">O<sub>3</sub></span> 3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span> measurements are underestimated by 5.5&thinsp;%–9.0&thinsp;%, which is mainly due to the systematic uncertainty in the partial column between 20 and 40&thinsp;km (about <span class="inline-formula">−10.4</span>&thinsp;%). The systematic uncertainty in the partial column between surface and 20&thinsp;km is relatively small (within 2.4&thinsp;%). By comparison with other measurements, it was found that the FTIR <span class="inline-formula">O<sub>3</sub></span> (3040&thinsp;cm<span class="inline-formula"><sup>−1</sup></span>) retrievals capture the seasonal and synoptic variations of the <span class="inline-formula">O<sub>3</sub></span> total and two partial columns very well. Therefore, the ongoing FTIR measurements at Xianghe can provide useful information on the <span class="inline-formula">O<sub>3</sub></span> variations and (in the future) long-term trends.</p>https://amt.copernicus.org/articles/13/5379/2020/amt-13-5379-2020.pdf