Ground-based Fourier transform infrared (FTIR) O<sub>3</sub> retrievals from the 3040 cm<sup>−1</sup> spectral range at Xianghe, China
<p>In this study, we present <span class="inline-formula">O<sub>3</sub></span> retrievals from ground-based Fourier transform infrared (FTIR) solar absorption measurements between June 2018 and December 2019 at Xianghe, China (39.75<span class="inline-...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-10-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/13/5379/2020/amt-13-5379-2020.pdf |
Summary: | <p>In this study, we present <span class="inline-formula">O<sub>3</sub></span> retrievals from ground-based Fourier transform infrared (FTIR) solar absorption measurements between June 2018 and December 2019 at Xianghe, China (39.75<span class="inline-formula"><sup>∘</sup></span> N, 116.96<span class="inline-formula"><sup>∘</sup></span> E). The FTIR spectrometer at Xianghe is operated with indium gallium arsenide (InGaAs) and indium antimonide (InSb) detectors, recording the spectra between 1800 and 11 000 cm<span class="inline-formula"><sup>−1</sup></span>. As the harmonized FTIR <span class="inline-formula">O<sub>3</sub></span> retrieval strategy <span class="cit" id="xref_paren.1">(<a href="#bib1.bibx39">Vigouroux et al.</a>, <a href="#bib1.bibx39">2015</a>)</span> within the Network for the Detection of Atmospheric Composition Change (NDACC) uses the 1000 cm<span class="inline-formula"><sup>−1</sup></span> spectral range, we apply the <span class="inline-formula">O<sub>3</sub></span> retrieval in the 3040 cm<span class="inline-formula"><sup>−1</sup></span> spectral range at Xianghe.</p>
<p>The retrieved <span class="inline-formula">O<sub>3</sub></span> profile is mainly sensitive to the vertical range between 10 and 40 km, and the degrees of freedom for signal is <span class="inline-formula">2.4±0.3</span> (<span class="inline-formula">1<i>σ</i></span>), indicating that there are two individual pieces of information in partial columns between the surface and 20 km and between 20 and 40 km. According to the optimal estimation method, the systematic and random uncertainties of the FTIR <span class="inline-formula">O<sub>3</sub></span> total columns are about 13.6 % and 1.4 %, respectively. The random uncertainty is consistent with the observed daily standard deviation of the FTIR retrievals.</p>
<p>To validate the FTIR <span class="inline-formula">O<sub>3</sub></span> total and partial columns, we apply the same <span class="inline-formula">O<sub>3</sub></span> retrieval strategy at Maïdo, Réunion (a.k.a. Reunion Island; 21.08<span class="inline-formula"><sup>∘</sup></span> N, 55.38<span class="inline-formula"><sup>∘</sup></span> E). The FTIR <span class="inline-formula">O<sub>3</sub></span> (3040 cm<span class="inline-formula"><sup>−1</sup></span>) measurements at Xianghe and Maïdo are then compared with the nearby ozonesondes at Beijing (39.81<span class="inline-formula"><sup>∘</sup></span> N, 116.47<span class="inline-formula"><sup>∘</sup></span> E) and at Gillot (20.89<span class="inline-formula"><sup>∘</sup></span> S, 55.53<span class="inline-formula"><sup>∘</sup></span> E), respectively, as well as with co-located TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements at both sites. In addition at Maïdo, we compare the FTIR <span class="inline-formula">O<sub>3</sub></span> (3040 cm<span class="inline-formula"><sup>−1</sup></span>) retrievals with the standard NDACC FTIR <span class="inline-formula">O<sub>3</sub></span> measurements using the 1000 cm<span class="inline-formula"><sup>−1</sup></span> spectral range. It was found that the total columns retrieved from the FTIR <span class="inline-formula">O<sub>3</sub></span> 3040 cm<span class="inline-formula"><sup>−1</sup></span> measurements are underestimated by 5.5 %–9.0 %, which is mainly due to the systematic uncertainty in the partial column between 20 and 40 km (about <span class="inline-formula">−10.4</span> %). The systematic uncertainty in the partial column between surface and 20 km is relatively small (within 2.4 %). By comparison with other measurements, it was found that the FTIR <span class="inline-formula">O<sub>3</sub></span> (3040 cm<span class="inline-formula"><sup>−1</sup></span>) retrievals capture the seasonal and synoptic variations of the <span class="inline-formula">O<sub>3</sub></span> total and two partial columns very well. Therefore, the ongoing FTIR measurements at Xianghe can provide useful information on the <span class="inline-formula">O<sub>3</sub></span> variations and (in the future) long-term trends.</p> |
---|---|
ISSN: | 1867-1381 1867-8548 |