Experimental Study on the Fracture Parameters of Concrete
This study aimed to determine the influence of the volume fraction of steel fibers on the fracture parameters of concrete. Fifty notched steel-fiber-reinforced concrete (SFRC) beams and ordinary concrete beams with 100 mm × 100 mm × 515 mm were cast and tested via a three-point bending test. Among t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/14/1/129 |
id |
doaj-2782a2b82f19408a88c85636e064413a |
---|---|
record_format |
Article |
spelling |
doaj-2782a2b82f19408a88c85636e064413a2020-12-31T00:03:11ZengMDPI AGMaterials1996-19442021-12-011412912910.3390/ma14010129Experimental Study on the Fracture Parameters of ConcreteZhanqiao Wang0Jin Gou1Danying Gao2School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, ChinaSchool of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, ChinaSchool of Civil Engineering, Zhengzhou University, Zhengzhou 450002, ChinaThis study aimed to determine the influence of the volume fraction of steel fibers on the fracture parameters of concrete. Fifty notched steel-fiber-reinforced concrete (SFRC) beams and ordinary concrete beams with 100 mm × 100 mm × 515 mm were cast and tested via a three-point bending test. Among them, the type of steel fiber was the milling type (MF), and the volume fraction of steel fiber added was 0%, 0.5%, 1%, 1.5% and 2%, respectively. The effects of the steel fiber volume fraction (V<sub>F</sub>) on the critical stress intensity factor (K<sub>IC</sub>), fracture energy (G<sub>F</sub>), the deflection at failure(δ<sub>0</sub>), the critical crack mouth opening displacement (CMOD<sub>C</sub>) and the critical crack tip opening displacement (CTOD<sub>C</sub>) were studied. Through the analysis of test phenomena and test data such as the load-deflection (P-δ) curve, load-crack mouth opening displacement (P-CMOD) curve and load-crack tip opening displacement (P-CTOD) curve, the following conclusions are drawn: with the increase of the steel fiber volume fraction, some fracture parameters increase gradually and maintain a certain linear growth. The gain ratio of the fracture parameters increases significantly, and the gain effect is obvious. Through this law of growth, the experimental statistical formulas of fracture energy and the critical stress intensity factor are summarized.https://www.mdpi.com/1996-1944/14/1/129steel fiberthree-point bendingfracture parametersgain ratio |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhanqiao Wang Jin Gou Danying Gao |
spellingShingle |
Zhanqiao Wang Jin Gou Danying Gao Experimental Study on the Fracture Parameters of Concrete Materials steel fiber three-point bending fracture parameters gain ratio |
author_facet |
Zhanqiao Wang Jin Gou Danying Gao |
author_sort |
Zhanqiao Wang |
title |
Experimental Study on the Fracture Parameters of Concrete |
title_short |
Experimental Study on the Fracture Parameters of Concrete |
title_full |
Experimental Study on the Fracture Parameters of Concrete |
title_fullStr |
Experimental Study on the Fracture Parameters of Concrete |
title_full_unstemmed |
Experimental Study on the Fracture Parameters of Concrete |
title_sort |
experimental study on the fracture parameters of concrete |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2021-12-01 |
description |
This study aimed to determine the influence of the volume fraction of steel fibers on the fracture parameters of concrete. Fifty notched steel-fiber-reinforced concrete (SFRC) beams and ordinary concrete beams with 100 mm × 100 mm × 515 mm were cast and tested via a three-point bending test. Among them, the type of steel fiber was the milling type (MF), and the volume fraction of steel fiber added was 0%, 0.5%, 1%, 1.5% and 2%, respectively. The effects of the steel fiber volume fraction (V<sub>F</sub>) on the critical stress intensity factor (K<sub>IC</sub>), fracture energy (G<sub>F</sub>), the deflection at failure(δ<sub>0</sub>), the critical crack mouth opening displacement (CMOD<sub>C</sub>) and the critical crack tip opening displacement (CTOD<sub>C</sub>) were studied. Through the analysis of test phenomena and test data such as the load-deflection (P-δ) curve, load-crack mouth opening displacement (P-CMOD) curve and load-crack tip opening displacement (P-CTOD) curve, the following conclusions are drawn: with the increase of the steel fiber volume fraction, some fracture parameters increase gradually and maintain a certain linear growth. The gain ratio of the fracture parameters increases significantly, and the gain effect is obvious. Through this law of growth, the experimental statistical formulas of fracture energy and the critical stress intensity factor are summarized. |
topic |
steel fiber three-point bending fracture parameters gain ratio |
url |
https://www.mdpi.com/1996-1944/14/1/129 |
work_keys_str_mv |
AT zhanqiaowang experimentalstudyonthefractureparametersofconcrete AT jingou experimentalstudyonthefractureparametersofconcrete AT danyinggao experimentalstudyonthefractureparametersofconcrete |
_version_ |
1724365412772085760 |