Higher integrability for weak solutions to a degenerate parabolic system with singular coefficients

Abstract In this paper, we study the degenerate parabolic system uti+Xα∗(aijαβ(z)Xβuj)=gi(z,u,Xu)+Xα∗fiα(z,u,Xu), $$ u_{t}^{i} + X_{\alpha }^{*} \bigl(a_{ij}^{\alpha \beta }(z){X_{\beta }} {u^{j}}\bigr) = {g_{i}}(z,u,Xu) + X_{\alpha }^{*} f_{i}^{\alpha }(z,u,Xu), $$ where X={X1,…,Xm} $X=\{X_{1},\ldo...

Full description

Bibliographic Details
Main Authors: Yan Dong, Guangwei Du, Kelei Zhang
Format: Article
Language:English
Published: SpringerOpen 2019-10-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1285-y
id doaj-277706cdcf3c4ed4ac74cf02d0ec52e0
record_format Article
spelling doaj-277706cdcf3c4ed4ac74cf02d0ec52e02020-11-25T03:32:44ZengSpringerOpenBoundary Value Problems1687-27702019-10-012019111510.1186/s13661-019-1285-yHigher integrability for weak solutions to a degenerate parabolic system with singular coefficientsYan Dong0Guangwei Du1Kelei Zhang2Department of Applied Mathematics, Hubei University Of EconomicsSchool of Mathematical Sciences, Qufu Normal UniversitySchool of Mathematics and Computing Science, Guilin University of Electronic TechnologyAbstract In this paper, we study the degenerate parabolic system uti+Xα∗(aijαβ(z)Xβuj)=gi(z,u,Xu)+Xα∗fiα(z,u,Xu), $$ u_{t}^{i} + X_{\alpha }^{*} \bigl(a_{ij}^{\alpha \beta }(z){X_{\beta }} {u^{j}}\bigr) = {g_{i}}(z,u,Xu) + X_{\alpha }^{*} f_{i}^{\alpha }(z,u,Xu), $$ where X={X1,…,Xm} $X=\{X_{1},\ldots,X_{m} \}$ is a system of smooth real vector fields satisfying Hörmander’s condition and the coefficients aijαβ $a_{ij}^{\alpha \beta }$ are measurable functions and their skew-symmetric part can be unbounded. After proving the L2 $L^{2}$ estimates for the weak solutions, the higher integrability is proved by establishing a reverse Hölder inequality for weak solutions.http://link.springer.com/article/10.1186/s13661-019-1285-yDegenerate parabolic systemHörmander’s vector fieldsL 2 $L^{2}$ estimatesHigher integrability
collection DOAJ
language English
format Article
sources DOAJ
author Yan Dong
Guangwei Du
Kelei Zhang
spellingShingle Yan Dong
Guangwei Du
Kelei Zhang
Higher integrability for weak solutions to a degenerate parabolic system with singular coefficients
Boundary Value Problems
Degenerate parabolic system
Hörmander’s vector fields
L 2 $L^{2}$ estimates
Higher integrability
author_facet Yan Dong
Guangwei Du
Kelei Zhang
author_sort Yan Dong
title Higher integrability for weak solutions to a degenerate parabolic system with singular coefficients
title_short Higher integrability for weak solutions to a degenerate parabolic system with singular coefficients
title_full Higher integrability for weak solutions to a degenerate parabolic system with singular coefficients
title_fullStr Higher integrability for weak solutions to a degenerate parabolic system with singular coefficients
title_full_unstemmed Higher integrability for weak solutions to a degenerate parabolic system with singular coefficients
title_sort higher integrability for weak solutions to a degenerate parabolic system with singular coefficients
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2019-10-01
description Abstract In this paper, we study the degenerate parabolic system uti+Xα∗(aijαβ(z)Xβuj)=gi(z,u,Xu)+Xα∗fiα(z,u,Xu), $$ u_{t}^{i} + X_{\alpha }^{*} \bigl(a_{ij}^{\alpha \beta }(z){X_{\beta }} {u^{j}}\bigr) = {g_{i}}(z,u,Xu) + X_{\alpha }^{*} f_{i}^{\alpha }(z,u,Xu), $$ where X={X1,…,Xm} $X=\{X_{1},\ldots,X_{m} \}$ is a system of smooth real vector fields satisfying Hörmander’s condition and the coefficients aijαβ $a_{ij}^{\alpha \beta }$ are measurable functions and their skew-symmetric part can be unbounded. After proving the L2 $L^{2}$ estimates for the weak solutions, the higher integrability is proved by establishing a reverse Hölder inequality for weak solutions.
topic Degenerate parabolic system
Hörmander’s vector fields
L 2 $L^{2}$ estimates
Higher integrability
url http://link.springer.com/article/10.1186/s13661-019-1285-y
work_keys_str_mv AT yandong higherintegrabilityforweaksolutionstoadegenerateparabolicsystemwithsingularcoefficients
AT guangweidu higherintegrabilityforweaksolutionstoadegenerateparabolicsystemwithsingularcoefficients
AT keleizhang higherintegrabilityforweaksolutionstoadegenerateparabolicsystemwithsingularcoefficients
_version_ 1724566274513567744