Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells
Abstract Background The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is m...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-01-01
|
Series: | Arthritis Research & Therapy |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13075-019-1830-1 |
id |
doaj-271d0bc7b9d44d91884b7d33066809af |
---|---|
record_format |
Article |
spelling |
doaj-271d0bc7b9d44d91884b7d33066809af2020-11-25T02:38:29ZengBMCArthritis Research & Therapy1478-63622019-01-0121111410.1186/s13075-019-1830-1Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cellsChi-Chien Niu0Song-Shu Lin1Li-Jen Yuan2Meng-Ling Lu3Steve W. N. Ueng4Chuen-Yung Yang5Tsung-Ting Tsai6Po-Liang Lai7Department of Orthopaedic Surgery, Chang Gung Memorial HospitalDepartment of Orthopaedic Surgery, Chang Gung Memorial HospitalDepartment of Orthopaedic Surgery, E-Da Hospital/I-Shou UniversityDepartment of Orthopaedic Surgery, Chang Gung Memorial HospitalDepartment of Orthopaedic Surgery, Chang Gung Memorial HospitalDepartment of Orthopaedic Surgery, Chang Gung Memorial HospitalDepartment of Orthopaedic Surgery, Chang Gung Memorial HospitalDepartment of Orthopaedic Surgery, Chang Gung Memorial HospitalAbstract Background The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated by microRNAs (miRNAs), with miR-107 expression downregulated during hypoxia. In this study, we investigated the regulation of the miR-107/HMGB1/RAGE pathway in degenerated nucleus pulposus cells (NPCs) after hyperbaric oxygen (HBO) treatment. Methods NPCs were separated from human degenerated intervertebral disc tissues. The control cells were maintained in 5% CO2/95% air, and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The cellular protein and mRNA levels of HMGB1, RAGE, and inducible nitric oxide synthase (iNOS) were assessed, and the phosphorylation of MAPK (p38MAPK, ERK, and JNK) was evaluated. Additionally, cytosolic and nuclear fractions of the IκBα and NF-κB p65 proteins were analyzed, and secreted HMGB1 and metalloprotease (MMP) levels in the conditioned media were quantified. Results Using microarray analyses, 96 miRNAs were identified as upregulated and 66 downregulated following HBO treatment. Based on these results, miR-107 was selected for further investigation. Bioinformatics analyses indicated that the 3′ untranslated region of the HMGB1 mRNA contained the “seed-matched-sequence” for hsa-miR-107, which was validated via dual-luciferase reporter assays. MiR-107 was markedly induced by HBO, and simultaneous suppression of HMGB1 was observed in NPCs. Knockdown of miR-107 resulted in upregulation of HMGB1 expression in HBO-treated cells, and HBO treatment downregulated the mRNA and protein levels of HMGB1, RAGE, and iNOS and the secretion of HMGB1. In addition, HBO treatment upregulated the protein levels of cytosolic IκBα and decreased the nuclear translocation of NF-κB in NPCs. Moreover, HBO treatment downregulated the phosphorylation of p38MAPK, ERK, and JNK and significantly decreased the secretion of MMP-3, MMP-9, and MMP-13. Conclusions HBO inhibits pathways related to HMGB1/RAGE signaling via upregulation of miR-107 expression in degenerated human NPCs.http://link.springer.com/article/10.1186/s13075-019-1830-1Hyperbaric oxygenNucleus pulposus cellsmiR-107HMGB1RAGE |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chi-Chien Niu Song-Shu Lin Li-Jen Yuan Meng-Ling Lu Steve W. N. Ueng Chuen-Yung Yang Tsung-Ting Tsai Po-Liang Lai |
spellingShingle |
Chi-Chien Niu Song-Shu Lin Li-Jen Yuan Meng-Ling Lu Steve W. N. Ueng Chuen-Yung Yang Tsung-Ting Tsai Po-Liang Lai Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells Arthritis Research & Therapy Hyperbaric oxygen Nucleus pulposus cells miR-107 HMGB1 RAGE |
author_facet |
Chi-Chien Niu Song-Shu Lin Li-Jen Yuan Meng-Ling Lu Steve W. N. Ueng Chuen-Yung Yang Tsung-Ting Tsai Po-Liang Lai |
author_sort |
Chi-Chien Niu |
title |
Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_short |
Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_full |
Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_fullStr |
Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_full_unstemmed |
Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_sort |
upregulation of mir-107 expression following hyperbaric oxygen treatment suppresses hmgb1/rage signaling in degenerated human nucleus pulposus cells |
publisher |
BMC |
series |
Arthritis Research & Therapy |
issn |
1478-6362 |
publishDate |
2019-01-01 |
description |
Abstract Background The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated by microRNAs (miRNAs), with miR-107 expression downregulated during hypoxia. In this study, we investigated the regulation of the miR-107/HMGB1/RAGE pathway in degenerated nucleus pulposus cells (NPCs) after hyperbaric oxygen (HBO) treatment. Methods NPCs were separated from human degenerated intervertebral disc tissues. The control cells were maintained in 5% CO2/95% air, and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The cellular protein and mRNA levels of HMGB1, RAGE, and inducible nitric oxide synthase (iNOS) were assessed, and the phosphorylation of MAPK (p38MAPK, ERK, and JNK) was evaluated. Additionally, cytosolic and nuclear fractions of the IκBα and NF-κB p65 proteins were analyzed, and secreted HMGB1 and metalloprotease (MMP) levels in the conditioned media were quantified. Results Using microarray analyses, 96 miRNAs were identified as upregulated and 66 downregulated following HBO treatment. Based on these results, miR-107 was selected for further investigation. Bioinformatics analyses indicated that the 3′ untranslated region of the HMGB1 mRNA contained the “seed-matched-sequence” for hsa-miR-107, which was validated via dual-luciferase reporter assays. MiR-107 was markedly induced by HBO, and simultaneous suppression of HMGB1 was observed in NPCs. Knockdown of miR-107 resulted in upregulation of HMGB1 expression in HBO-treated cells, and HBO treatment downregulated the mRNA and protein levels of HMGB1, RAGE, and iNOS and the secretion of HMGB1. In addition, HBO treatment upregulated the protein levels of cytosolic IκBα and decreased the nuclear translocation of NF-κB in NPCs. Moreover, HBO treatment downregulated the phosphorylation of p38MAPK, ERK, and JNK and significantly decreased the secretion of MMP-3, MMP-9, and MMP-13. Conclusions HBO inhibits pathways related to HMGB1/RAGE signaling via upregulation of miR-107 expression in degenerated human NPCs. |
topic |
Hyperbaric oxygen Nucleus pulposus cells miR-107 HMGB1 RAGE |
url |
http://link.springer.com/article/10.1186/s13075-019-1830-1 |
work_keys_str_mv |
AT chichienniu upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT songshulin upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT lijenyuan upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT menglinglu upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT stevewnueng upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT chuenyungyang upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT tsungtingtsai upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT polianglai upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells |
_version_ |
1724790584163434496 |