Danger-Pose Detection System Using Commodity Wi-Fi for Bathroom Monitoring
A bathroom has higher probability of accidents than other rooms due to a slippery floor and temperature change. Because of high privacy and humidity, we face difficulties in monitoring inside a bathroom using traditional healthcare methods based on cameras and wearable sensors. In this paper, we pre...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/19/4/884 |
id |
doaj-271ad201c0154593900dd4c31c6e163f |
---|---|
record_format |
Article |
spelling |
doaj-271ad201c0154593900dd4c31c6e163f2020-11-25T00:02:55ZengMDPI AGSensors1424-82202019-02-0119488410.3390/s19040884s19040884Danger-Pose Detection System Using Commodity Wi-Fi for Bathroom MonitoringZizheng Zhang0Shigemi Ishida1Shigeaki Tagashira2Akira Fukuda3Graduate School/Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, JapanGraduate School/Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, JapanFaculty of Informatics, Kansai University, Osaka 569-1095, JapanGraduate School/Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, JapanA bathroom has higher probability of accidents than other rooms due to a slippery floor and temperature change. Because of high privacy and humidity, we face difficulties in monitoring inside a bathroom using traditional healthcare methods based on cameras and wearable sensors. In this paper, we present a danger-pose detection system using commodity Wi-Fi devices, which can be applied to bathroom monitoring, preserving privacy. A machine learning-based detection method usually requires data collected in target situations, which is difficult in detection-of-danger situations. We therefore employ a machine learning-based anomaly-detection method that requires a small amount of data in anomaly conditions, minimizing the required training data collected in dangerous conditions. We first derive the amplitude and phase shift from Wi-Fi channel state information (CSI) to extract low-frequency components that are related to human activities. We then separately extract static and dynamic features from the CSI changes in time. Finally, the static and dynamic features are fed into a one-class support vector machine (SVM), which is used as an anomaly-detection method, to classify whether a user is not in bathtub, bathing safely, or in dangerous conditions. We conducted experimental evaluations and demonstrated that our danger-pose detection system achieved a high detection performance in a non-line-of-sight (NLOS) scenario.https://www.mdpi.com/1424-8220/19/4/884channel state information (CSI)non-line-of-sight (NLOS)one-class support vector machine (SVM)anomaly detectionhealthcare |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zizheng Zhang Shigemi Ishida Shigeaki Tagashira Akira Fukuda |
spellingShingle |
Zizheng Zhang Shigemi Ishida Shigeaki Tagashira Akira Fukuda Danger-Pose Detection System Using Commodity Wi-Fi for Bathroom Monitoring Sensors channel state information (CSI) non-line-of-sight (NLOS) one-class support vector machine (SVM) anomaly detection healthcare |
author_facet |
Zizheng Zhang Shigemi Ishida Shigeaki Tagashira Akira Fukuda |
author_sort |
Zizheng Zhang |
title |
Danger-Pose Detection System Using Commodity Wi-Fi for Bathroom Monitoring |
title_short |
Danger-Pose Detection System Using Commodity Wi-Fi for Bathroom Monitoring |
title_full |
Danger-Pose Detection System Using Commodity Wi-Fi for Bathroom Monitoring |
title_fullStr |
Danger-Pose Detection System Using Commodity Wi-Fi for Bathroom Monitoring |
title_full_unstemmed |
Danger-Pose Detection System Using Commodity Wi-Fi for Bathroom Monitoring |
title_sort |
danger-pose detection system using commodity wi-fi for bathroom monitoring |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2019-02-01 |
description |
A bathroom has higher probability of accidents than other rooms due to a slippery floor and temperature change. Because of high privacy and humidity, we face difficulties in monitoring inside a bathroom using traditional healthcare methods based on cameras and wearable sensors. In this paper, we present a danger-pose detection system using commodity Wi-Fi devices, which can be applied to bathroom monitoring, preserving privacy. A machine learning-based detection method usually requires data collected in target situations, which is difficult in detection-of-danger situations. We therefore employ a machine learning-based anomaly-detection method that requires a small amount of data in anomaly conditions, minimizing the required training data collected in dangerous conditions. We first derive the amplitude and phase shift from Wi-Fi channel state information (CSI) to extract low-frequency components that are related to human activities. We then separately extract static and dynamic features from the CSI changes in time. Finally, the static and dynamic features are fed into a one-class support vector machine (SVM), which is used as an anomaly-detection method, to classify whether a user is not in bathtub, bathing safely, or in dangerous conditions. We conducted experimental evaluations and demonstrated that our danger-pose detection system achieved a high detection performance in a non-line-of-sight (NLOS) scenario. |
topic |
channel state information (CSI) non-line-of-sight (NLOS) one-class support vector machine (SVM) anomaly detection healthcare |
url |
https://www.mdpi.com/1424-8220/19/4/884 |
work_keys_str_mv |
AT zizhengzhang dangerposedetectionsystemusingcommoditywififorbathroommonitoring AT shigemiishida dangerposedetectionsystemusingcommoditywififorbathroommonitoring AT shigeakitagashira dangerposedetectionsystemusingcommoditywififorbathroommonitoring AT akirafukuda dangerposedetectionsystemusingcommoditywififorbathroommonitoring |
_version_ |
1725435860419084288 |