Identifikasi Emosi Manusia Berdasarkan Ucapan Menggunakan Metode Ekstraksi Ciri LPC dan Metode Euclidean Distance

Ucapan merupakan sinyal yang memiliki kompleksitas tinggi terdiri dari berbagai informasi. Informasi yang dapat ditangkap dari ucapan dapat berupa pesan terhadap lawan bicara, pembicara, bahasa, bahkan emosi pembicara itu sendiri tanpa disadari oleh si pembicara. Speech Processing adalah cabang dari...

Full description

Bibliographic Details
Main Authors: Siti Helmiyah, Imam Riadi, Rusydi Umar, Abdullah Hanif, Anton Yudhana, Abdul Fadlil
Format: Article
Language:Indonesian
Published: University of Brawijaya 2020-12-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:http://jtiik.ub.ac.id/index.php/jtiik/article/view/2693
Description
Summary:Ucapan merupakan sinyal yang memiliki kompleksitas tinggi terdiri dari berbagai informasi. Informasi yang dapat ditangkap dari ucapan dapat berupa pesan terhadap lawan bicara, pembicara, bahasa, bahkan emosi pembicara itu sendiri tanpa disadari oleh si pembicara. Speech Processing adalah cabang dari pemrosesan sinyal digital yang bertujuan untuk terwujudnya interaksi yang natural antar manusia dan mesin. Karakteristik emosional adalah fitur yang terdapat dalam ucapan yang membawa ciri-ciri dari emosi pembicara. Linear Predictive Coding (LPC) adalah sebuah metode untuk mengekstraksi ciri dalam pemrosesan sinyal. Penelitian ini, menggunakan LPC sebagai ekstraksi ciri dan Metode Euclidean Distance untuk identifikasi emosi berdasarkan ciri yang didapatkan dari LPC.  Penelitian ini menggunakan data emosi marah, sedih, bahagia, netral dan bosan. Data yang digunakan diambil dari Berlin Emo DB, dengan menggunakan tiga kalimat berbeda dan aktor yang berbeda juga. Penelitian ini menghasilkan akurasi pada emosi sedih 58,33%, emosi netral 50%, emosi marah 41,67%, emosi bahagia 8,33% dan untuk emosi bosan tidak dapat dikenali. Penggunaan Metode LPC sebagai ekstraksi ciri memberikan hasil yang kurang baik pada penelitian ini karena akurasi rata-rata hanya sebesar 31,67% untuk identifikasi semua emosi. Data suara yang digunakan dengan kalimat, aktor, umur dan aksen yang berbeda dapat mempengaruhi dalam pengenalan emosi, maka dari itu ekstraksi ciri dalam pengenalan pola ucapan emosi manusia sangat penting. Hasil akurasi pada penelitian ini masih sangat kecil dan dapat ditingkatkan dengan menggunakan ekstraksi ciri yang lain seperti prosidis, spektral, dan kualitas suara, penggunaan parameter max, min, mean, median, kurtosis dan skewenes. Selain itu penggunaan metode klasifikasi juga dapat mempengaruhi hasil pengenalan emosi.   Abstract Speech is a signal that has a high complexity consisting of various information. Information that can be captured from speech can be in the form of messages to interlocutor, the speaker, the language, even the speaker's emotions themselves without the speaker realizing it. Speech Processing is a branch of digital signal processing aimed at the realization of natural interactions between humans and machines. Emotional characteristics are features contained in the speech that carry the characteristics of the speaker's emotions. Linear Predictive Coding (LPC) is a method for extracting features in signal processing. This research uses LPC as a feature extraction and Euclidean Distance Method to identify emotions based on features obtained from LPC. This study uses data on emotions of anger, sadness, happiness, neutrality, and boredom. The data used was taken from Berlin Emo DB, using three different sentences and different actors. This research resulted in inaccuracy in sad emotions 58.33%, neutral emotions 50%, angry emotions 41.67%, happy emotions 8.33% and bored emotions could not be recognized. The use of the LPC method as feature extraction gave unfavorable results in this study because the average accuracy was only 31.67% for the identification of all emotions. Voice data used with different sentences, actors, ages, and accents can influence the recognition of emotions, therefore the extraction of features in the recognition of speech patterns of human emotions is very important. Accuracy results in this study are still very small and can be improved by using other feature extractions such as provides, spectral, and sound quality, using parameters max, min, mean, median, kurtosis, and skewness. Besides the use of classification methods can also affect the results of emotional recognition.
ISSN:2355-7699
2528-6579