Enhancing Matrix Completion Using a Modified Second-Order Total Variation

In this paper, we propose a new method to deal with the matrix completion problem. Different from most existing matrix completion methods that only pursue the low rank of underlying matrices, the proposed method simultaneously optimizes their low rank and smoothness such that they mutually help each...

Full description

Bibliographic Details
Main Authors: Wendong Wang, Jianjun Wang
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2018/2598160
Description
Summary:In this paper, we propose a new method to deal with the matrix completion problem. Different from most existing matrix completion methods that only pursue the low rank of underlying matrices, the proposed method simultaneously optimizes their low rank and smoothness such that they mutually help each other and hence yield a better performance. In particular, the proposed method becomes very competitive with the introduction of a modified second-order total variation, even when it is compared with some recently emerged matrix completion methods that also combine the low rank and smoothness priors of matrices together. An efficient algorithm is developed to solve the induced optimization problem. The extensive experiments further confirm the superior performance of the proposed method over many state-of-the-art methods.
ISSN:1026-0226
1607-887X