Combination of scoring schemes for protein docking

<p>Abstract</p> <p>Background</p> <p>Docking algorithms are developed to predict in which orientation two proteins are likely to bind under natural conditions. The currently used methods usually consist of a sampling step followed by a scoring step. We developed a weigh...

Full description

Bibliographic Details
Main Authors: Schomburg Dietmar, Heuser Philipp
Format: Article
Language:English
Published: BMC 2007-08-01
Series:BMC Bioinformatics
Online Access:http://www.biomedcentral.com/1471-2105/8/279
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Docking algorithms are developed to predict in which orientation two proteins are likely to bind under natural conditions. The currently used methods usually consist of a sampling step followed by a scoring step. We developed a weighted geometric correlation based on optimised atom specific weighting factors and combined them with our previously published amino acid specific scoring and with a comprehensive SVM-based scoring function.</p> <p>Results</p> <p>The scoring with the atom specific weighting factors yields better results than the amino acid specific scoring. In combination with SVM-based scoring functions the percentage of complexes for which a near native structure can be predicted within the top 100 ranks increased from 14% with the geometric scoring to 54% with the combination of all scoring functions. Especially for the enzyme-inhibitor complexes the results of the ranking are excellent. For half of these complexes a near-native structure can be predicted within the first 10 proposed structures and for more than 86% of all enzyme-inhibitor complexes within the first 50 predicted structures.</p> <p>Conclusion</p> <p>We were able to develop a combination of different scoring schemes which considers a series of previously described and some new scoring criteria yielding a remarkable improvement of prediction quality.</p>
ISSN:1471-2105