Learning Latent Jet Structure
We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Alloca...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/7/1167 |
id |
doaj-26f7d9bc1ad6453bb60ea22fcee4953c |
---|---|
record_format |
Article |
spelling |
doaj-26f7d9bc1ad6453bb60ea22fcee4953c2021-07-23T14:09:08ZengMDPI AGSymmetry2073-89942021-06-01131167116710.3390/sym13071167Learning Latent Jet StructureBarry M. Dillon0Darius A. Faroughy1Jernej F. Kamenik2Manuel Szewc3Institut fur Theoretische Physik, Universitat Heidelberg, 69120 Heidelberg, GermanyPhysik-Institut, Universitat Zurich, CH-8057 Zurich, SwitzerlandJozef Stefan Institute, Jamova 39, 1000 Ljubljana, SloveniaInternational Center for Advanced Studies (ICAS), UNSAM & CONICET 25 de Mayo y Francia, 1650 Buenos Aires, ArgentinaWe summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mover><mi>t</mi><mo>¯</mo></mover></mrow></semantics></math></inline-formula> jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.https://www.mdpi.com/2073-8994/13/7/1167QCDjet substructure analysisBayesian semi-supervised learning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Barry M. Dillon Darius A. Faroughy Jernej F. Kamenik Manuel Szewc |
spellingShingle |
Barry M. Dillon Darius A. Faroughy Jernej F. Kamenik Manuel Szewc Learning Latent Jet Structure Symmetry QCD jet substructure analysis Bayesian semi-supervised learning |
author_facet |
Barry M. Dillon Darius A. Faroughy Jernej F. Kamenik Manuel Szewc |
author_sort |
Barry M. Dillon |
title |
Learning Latent Jet Structure |
title_short |
Learning Latent Jet Structure |
title_full |
Learning Latent Jet Structure |
title_fullStr |
Learning Latent Jet Structure |
title_full_unstemmed |
Learning Latent Jet Structure |
title_sort |
learning latent jet structure |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-06-01 |
description |
We summarize our recent work on how to infer on jet formation processes directly from substructure data using generative statistical models. We recount in detail how to cast jet substructure observables’ measurements in terms of Bayesian mixed membership models, in particular Latent Dirichlet Allocation. Using a mixed sample of QCD and boosted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mover><mi>t</mi><mo>¯</mo></mover></mrow></semantics></math></inline-formula> jet events and focusing on the primary Lund plane observable basis for event measurements, we show how using educated priors on the latent distributions allows to infer on the underlying physical processes in a semi-supervised way. |
topic |
QCD jet substructure analysis Bayesian semi-supervised learning |
url |
https://www.mdpi.com/2073-8994/13/7/1167 |
work_keys_str_mv |
AT barrymdillon learninglatentjetstructure AT dariusafaroughy learninglatentjetstructure AT jernejfkamenik learninglatentjetstructure AT manuelszewc learninglatentjetstructure |
_version_ |
1721285603156295680 |