Mean-Square Admissibility Analysis and Controller Design for It<italic>&#x00F4;</italic>-Type Stochastic Singular Systems

The issues of mean-square admissibility and synthesis of It<inline-formula> <tex-math notation="LaTeX">$\hat {o}$ </tex-math></inline-formula>-type stochastic singular systems (SSSs) under Brownian parameter perturbations are introduced in this article. For ease of...

Full description

Bibliographic Details
Main Authors: Jian Huang, Xu Yang, Liang Qiao
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
OBC
Online Access:https://ieeexplore.ieee.org/document/9393352/
id doaj-26e38b7c9c864efeb4c67d606497a615
record_format Article
spelling doaj-26e38b7c9c864efeb4c67d606497a6152021-04-13T23:00:37ZengIEEEIEEE Access2169-35362021-01-019543605436810.1109/ACCESS.2021.30703389393352Mean-Square Admissibility Analysis and Controller Design for It<italic>&#x00F4;</italic>-Type Stochastic Singular SystemsJian Huang0https://orcid.org/0000-0002-3783-2682Xu Yang1https://orcid.org/0000-0001-9919-1801Liang Qiao2Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, ChinaKey Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, ChinaEngineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, ChinaThe issues of mean-square admissibility and synthesis of It<inline-formula> <tex-math notation="LaTeX">$\hat {o}$ </tex-math></inline-formula>-type stochastic singular systems (SSSs) under Brownian parameter perturbations are introduced in this article. For ease of computation, a novel sufficient condition is given to guarantee autonomous systems are mean-square admissible via strict linear matrix inequalities(LMIs). Furthermore, own to the measurable of the system states, both state feedback controller and observer-based controller (OBC) for It<inline-formula> <tex-math notation="LaTeX">$\hat {o}$ </tex-math></inline-formula>-type SSSs are investigated. However, in It<inline-formula> <tex-math notation="LaTeX">$\hat {o}$ </tex-math></inline-formula>-type SSSs, because the state of the system and the observer can be affected by Brownian fluctuation, it is not feasible that the observer and control gains design are completely separate. To this end, an innovative design approach is also proposed to solve the controller and observer parameters simultaneously in form of strict LMIs. Finally, three examples are introduced to demonstrate the effectiveness of the proposed method.https://ieeexplore.ieee.org/document/9393352/It<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ô</italic>-type SSSsmean-square admissibilityBrownian parameter perturbationsOBCstrict LMIs
collection DOAJ
language English
format Article
sources DOAJ
author Jian Huang
Xu Yang
Liang Qiao
spellingShingle Jian Huang
Xu Yang
Liang Qiao
Mean-Square Admissibility Analysis and Controller Design for It<italic>&#x00F4;</italic>-Type Stochastic Singular Systems
IEEE Access
It<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ô</italic>-type SSSs
mean-square admissibility
Brownian parameter perturbations
OBC
strict LMIs
author_facet Jian Huang
Xu Yang
Liang Qiao
author_sort Jian Huang
title Mean-Square Admissibility Analysis and Controller Design for It<italic>&#x00F4;</italic>-Type Stochastic Singular Systems
title_short Mean-Square Admissibility Analysis and Controller Design for It<italic>&#x00F4;</italic>-Type Stochastic Singular Systems
title_full Mean-Square Admissibility Analysis and Controller Design for It<italic>&#x00F4;</italic>-Type Stochastic Singular Systems
title_fullStr Mean-Square Admissibility Analysis and Controller Design for It<italic>&#x00F4;</italic>-Type Stochastic Singular Systems
title_full_unstemmed Mean-Square Admissibility Analysis and Controller Design for It<italic>&#x00F4;</italic>-Type Stochastic Singular Systems
title_sort mean-square admissibility analysis and controller design for it<italic>&#x00f4;</italic>-type stochastic singular systems
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description The issues of mean-square admissibility and synthesis of It<inline-formula> <tex-math notation="LaTeX">$\hat {o}$ </tex-math></inline-formula>-type stochastic singular systems (SSSs) under Brownian parameter perturbations are introduced in this article. For ease of computation, a novel sufficient condition is given to guarantee autonomous systems are mean-square admissible via strict linear matrix inequalities(LMIs). Furthermore, own to the measurable of the system states, both state feedback controller and observer-based controller (OBC) for It<inline-formula> <tex-math notation="LaTeX">$\hat {o}$ </tex-math></inline-formula>-type SSSs are investigated. However, in It<inline-formula> <tex-math notation="LaTeX">$\hat {o}$ </tex-math></inline-formula>-type SSSs, because the state of the system and the observer can be affected by Brownian fluctuation, it is not feasible that the observer and control gains design are completely separate. To this end, an innovative design approach is also proposed to solve the controller and observer parameters simultaneously in form of strict LMIs. Finally, three examples are introduced to demonstrate the effectiveness of the proposed method.
topic It<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ô</italic>-type SSSs
mean-square admissibility
Brownian parameter perturbations
OBC
strict LMIs
url https://ieeexplore.ieee.org/document/9393352/
work_keys_str_mv AT jianhuang meansquareadmissibilityanalysisandcontrollerdesignforititalicx00f4italictypestochasticsingularsystems
AT xuyang meansquareadmissibilityanalysisandcontrollerdesignforititalicx00f4italictypestochasticsingularsystems
AT liangqiao meansquareadmissibilityanalysisandcontrollerdesignforititalicx00f4italictypestochasticsingularsystems
_version_ 1721528423741915136