Kajian Pembentukan Segitiga Sierpinski Pada Masalah Chaos Game dengan Memanfaatkan Transformasi Affine

The collection of midpoints in chaos game at early iteration looked like a shapeless or chaos. However, at the thousands of iterations the collection will converge to the Sierpinski triangle pattern. In this article Sierpinski triangle pattern will be discussed by the midpoint formula and affine tra...

Full description

Bibliographic Details
Main Authors: Kosala Dwidja Purnomo, Rere Figurani Armana, , Kusno
Format: Article
Language:English
Published: Universitas Udayana 2016-12-01
Series:Jurnal Matematika
Subjects:
Online Access:https://ojs.unud.ac.id/index.php/jmat/article/view/29277
id doaj-26c9ff6e8f9a4c6f8319a77a7d1ced7c
record_format Article
spelling doaj-26c9ff6e8f9a4c6f8319a77a7d1ced7c2020-11-25T01:45:06ZengUniversitas UdayanaJurnal Matematika1693-13942016-12-0162869210.24843/JMAT.2016.v06.i02.p7129277Kajian Pembentukan Segitiga Sierpinski Pada Masalah Chaos Game dengan Memanfaatkan Transformasi AffineKosala Dwidja Purnomo0Rere Figurani Armana1, Kusno2Jurusan Matematika FMIPA Universitas JemberJurusan Matematika FMIPA Universitas JemberJurusan Matematika FMIPA Universitas JemberThe collection of midpoints in chaos game at early iteration looked like a shapeless or chaos. However, at the thousands of iterations the collection will converge to the Sierpinski triangle pattern. In this article Sierpinski triangle pattern will be discussed by the midpoint formula and affine transformation, that is dilation operation. The starting point taken is not bounded within the equilateral triangle, but also outside of it. This study shows that midpoints plotted always converge at one of vertices of the triangle. The sequence of collection midpoints is on the line segments that form Sierpinski triangle, will always lie on the line segments at any next iteration. Meanwhile, a midpoint that is not on the line segments, in particular iteration will be possible on the line segments that form Sierpinski triangle. In the next iteration these midpoints will always be on the line segment that form Sierpinski triangle. So, the collection of midpoints at thousands of iteration will form Sierpinski triangle pattern.https://ojs.unud.ac.id/index.php/jmat/article/view/29277chaos gamedilationmidpointsSierpinski triangle
collection DOAJ
language English
format Article
sources DOAJ
author Kosala Dwidja Purnomo
Rere Figurani Armana
, Kusno
spellingShingle Kosala Dwidja Purnomo
Rere Figurani Armana
, Kusno
Kajian Pembentukan Segitiga Sierpinski Pada Masalah Chaos Game dengan Memanfaatkan Transformasi Affine
Jurnal Matematika
chaos game
dilation
midpoints
Sierpinski triangle
author_facet Kosala Dwidja Purnomo
Rere Figurani Armana
, Kusno
author_sort Kosala Dwidja Purnomo
title Kajian Pembentukan Segitiga Sierpinski Pada Masalah Chaos Game dengan Memanfaatkan Transformasi Affine
title_short Kajian Pembentukan Segitiga Sierpinski Pada Masalah Chaos Game dengan Memanfaatkan Transformasi Affine
title_full Kajian Pembentukan Segitiga Sierpinski Pada Masalah Chaos Game dengan Memanfaatkan Transformasi Affine
title_fullStr Kajian Pembentukan Segitiga Sierpinski Pada Masalah Chaos Game dengan Memanfaatkan Transformasi Affine
title_full_unstemmed Kajian Pembentukan Segitiga Sierpinski Pada Masalah Chaos Game dengan Memanfaatkan Transformasi Affine
title_sort kajian pembentukan segitiga sierpinski pada masalah chaos game dengan memanfaatkan transformasi affine
publisher Universitas Udayana
series Jurnal Matematika
issn 1693-1394
publishDate 2016-12-01
description The collection of midpoints in chaos game at early iteration looked like a shapeless or chaos. However, at the thousands of iterations the collection will converge to the Sierpinski triangle pattern. In this article Sierpinski triangle pattern will be discussed by the midpoint formula and affine transformation, that is dilation operation. The starting point taken is not bounded within the equilateral triangle, but also outside of it. This study shows that midpoints plotted always converge at one of vertices of the triangle. The sequence of collection midpoints is on the line segments that form Sierpinski triangle, will always lie on the line segments at any next iteration. Meanwhile, a midpoint that is not on the line segments, in particular iteration will be possible on the line segments that form Sierpinski triangle. In the next iteration these midpoints will always be on the line segment that form Sierpinski triangle. So, the collection of midpoints at thousands of iteration will form Sierpinski triangle pattern.
topic chaos game
dilation
midpoints
Sierpinski triangle
url https://ojs.unud.ac.id/index.php/jmat/article/view/29277
work_keys_str_mv AT kosaladwidjapurnomo kajianpembentukansegitigasierpinskipadamasalahchaosgamedenganmemanfaatkantransformasiaffine
AT rerefiguraniarmana kajianpembentukansegitigasierpinskipadamasalahchaosgamedenganmemanfaatkantransformasiaffine
AT kusno kajianpembentukansegitigasierpinskipadamasalahchaosgamedenganmemanfaatkantransformasiaffine
_version_ 1725025157167185920