Thermodynamic Geometry of Yang–Mills Vacua
We study vacuum fluctuation properties of an ensemble of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </semantics> &...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Universe |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1997/5/4/90 |
id |
doaj-26a95690e2ac4ebcb4cd20998fd1dec3 |
---|---|
record_format |
Article |
spelling |
doaj-26a95690e2ac4ebcb4cd20998fd1dec32020-11-24T21:44:24ZengMDPI AGUniverse2218-19972019-04-01549010.3390/universe5040090universe5040090Thermodynamic Geometry of Yang–Mills VacuaStefano Bellucci0Bhupendra Nath Tiwari1INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, ItalyINFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, ItalyWe study vacuum fluctuation properties of an ensemble of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> gauge theory configurations, in the limit of many colors, viz. <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>→</mo> <mo>∞</mo> </mrow> </semantics> </math> </inline-formula>, and explore the statistical nature of the topological susceptibility by analyzing its critical behavior at a non-zero-vacuum parameter <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula> and temperature <i>T</i>. We find that the system undergoes a vacuum phase transition at the chiral symmetry restoration temperature as well as at an absolute value of <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula>. On the other hand, the long-range correlation length solely depends on <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula> for the theories with critical exponent <inline-formula> <math display="inline"> <semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> or <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula> is the decoherence temperature. Furthermore, it is worth noticing that the unit-critical exponent vacuum configuration corresponds to a non-interacting statistical basis pertaining to a constant mass of <inline-formula> <math display="inline"> <semantics> <msup> <mi>η</mi> <mo>′</mo> </msup> </semantics> </math> </inline-formula>.https://www.mdpi.com/2218-1997/5/4/90thermodynamic geometryfluctuation theoryphase transitionstopological susceptibilityQCDlarge N gauge theory |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stefano Bellucci Bhupendra Nath Tiwari |
spellingShingle |
Stefano Bellucci Bhupendra Nath Tiwari Thermodynamic Geometry of Yang–Mills Vacua Universe thermodynamic geometry fluctuation theory phase transitions topological susceptibility QCD large N gauge theory |
author_facet |
Stefano Bellucci Bhupendra Nath Tiwari |
author_sort |
Stefano Bellucci |
title |
Thermodynamic Geometry of Yang–Mills Vacua |
title_short |
Thermodynamic Geometry of Yang–Mills Vacua |
title_full |
Thermodynamic Geometry of Yang–Mills Vacua |
title_fullStr |
Thermodynamic Geometry of Yang–Mills Vacua |
title_full_unstemmed |
Thermodynamic Geometry of Yang–Mills Vacua |
title_sort |
thermodynamic geometry of yang–mills vacua |
publisher |
MDPI AG |
series |
Universe |
issn |
2218-1997 |
publishDate |
2019-04-01 |
description |
We study vacuum fluctuation properties of an ensemble of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> gauge theory configurations, in the limit of many colors, viz. <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>→</mo> <mo>∞</mo> </mrow> </semantics> </math> </inline-formula>, and explore the statistical nature of the topological susceptibility by analyzing its critical behavior at a non-zero-vacuum parameter <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula> and temperature <i>T</i>. We find that the system undergoes a vacuum phase transition at the chiral symmetry restoration temperature as well as at an absolute value of <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula>. On the other hand, the long-range correlation length solely depends on <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula> for the theories with critical exponent <inline-formula> <math display="inline"> <semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> or <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula> is the decoherence temperature. Furthermore, it is worth noticing that the unit-critical exponent vacuum configuration corresponds to a non-interacting statistical basis pertaining to a constant mass of <inline-formula> <math display="inline"> <semantics> <msup> <mi>η</mi> <mo>′</mo> </msup> </semantics> </math> </inline-formula>. |
topic |
thermodynamic geometry fluctuation theory phase transitions topological susceptibility QCD large N gauge theory |
url |
https://www.mdpi.com/2218-1997/5/4/90 |
work_keys_str_mv |
AT stefanobellucci thermodynamicgeometryofyangmillsvacua AT bhupendranathtiwari thermodynamicgeometryofyangmillsvacua |
_version_ |
1725910580741537792 |