Thermodynamic Geometry of Yang–Mills Vacua

We study vacuum fluctuation properties of an ensemble of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </semantics> &...

Full description

Bibliographic Details
Main Authors: Stefano Bellucci, Bhupendra Nath Tiwari
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Universe
Subjects:
QCD
Online Access:https://www.mdpi.com/2218-1997/5/4/90
id doaj-26a95690e2ac4ebcb4cd20998fd1dec3
record_format Article
spelling doaj-26a95690e2ac4ebcb4cd20998fd1dec32020-11-24T21:44:24ZengMDPI AGUniverse2218-19972019-04-01549010.3390/universe5040090universe5040090Thermodynamic Geometry of Yang–Mills VacuaStefano Bellucci0Bhupendra Nath Tiwari1INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, ItalyINFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, ItalyWe study vacuum fluctuation properties of an ensemble of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> gauge theory configurations, in the limit of many colors, viz. <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>, and explore the statistical nature of the topological susceptibility by analyzing its critical behavior at a non-zero-vacuum parameter <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula> and temperature <i>T</i>. We find that the system undergoes a vacuum phase transition at the chiral symmetry restoration temperature as well as at an absolute value of <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula>. On the other hand, the long-range correlation length solely depends on <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula> for the theories with critical exponent <inline-formula> <math display="inline"> <semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> or <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula> is the decoherence temperature. Furthermore, it is worth noticing that the unit-critical exponent vacuum configuration corresponds to a non-interacting statistical basis pertaining to a constant mass of <inline-formula> <math display="inline"> <semantics> <msup> <mi>&#951;</mi> <mo>&#8242;</mo> </msup> </semantics> </math> </inline-formula>.https://www.mdpi.com/2218-1997/5/4/90thermodynamic geometryfluctuation theoryphase transitionstopological susceptibilityQCDlarge N gauge theory
collection DOAJ
language English
format Article
sources DOAJ
author Stefano Bellucci
Bhupendra Nath Tiwari
spellingShingle Stefano Bellucci
Bhupendra Nath Tiwari
Thermodynamic Geometry of Yang–Mills Vacua
Universe
thermodynamic geometry
fluctuation theory
phase transitions
topological susceptibility
QCD
large N gauge theory
author_facet Stefano Bellucci
Bhupendra Nath Tiwari
author_sort Stefano Bellucci
title Thermodynamic Geometry of Yang–Mills Vacua
title_short Thermodynamic Geometry of Yang–Mills Vacua
title_full Thermodynamic Geometry of Yang–Mills Vacua
title_fullStr Thermodynamic Geometry of Yang–Mills Vacua
title_full_unstemmed Thermodynamic Geometry of Yang–Mills Vacua
title_sort thermodynamic geometry of yang–mills vacua
publisher MDPI AG
series Universe
issn 2218-1997
publishDate 2019-04-01
description We study vacuum fluctuation properties of an ensemble of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> gauge theory configurations, in the limit of many colors, viz. <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>, and explore the statistical nature of the topological susceptibility by analyzing its critical behavior at a non-zero-vacuum parameter <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula> and temperature <i>T</i>. We find that the system undergoes a vacuum phase transition at the chiral symmetry restoration temperature as well as at an absolute value of <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula>. On the other hand, the long-range correlation length solely depends on <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula> for the theories with critical exponent <inline-formula> <math display="inline"> <semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> or <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula> is the decoherence temperature. Furthermore, it is worth noticing that the unit-critical exponent vacuum configuration corresponds to a non-interacting statistical basis pertaining to a constant mass of <inline-formula> <math display="inline"> <semantics> <msup> <mi>&#951;</mi> <mo>&#8242;</mo> </msup> </semantics> </math> </inline-formula>.
topic thermodynamic geometry
fluctuation theory
phase transitions
topological susceptibility
QCD
large N gauge theory
url https://www.mdpi.com/2218-1997/5/4/90
work_keys_str_mv AT stefanobellucci thermodynamicgeometryofyangmillsvacua
AT bhupendranathtiwari thermodynamicgeometryofyangmillsvacua
_version_ 1725910580741537792