Two-parameter nonlinear oscillations: the neumann problem

Boundary value problems of the form  are considered, where  In our considerations functions f and g are generally nonlinear. We give a description of a solution set of the problem (i), (ii). It consist of all triples () such that (λ,μ,x(t)) nontrivially ′solves the problem(i),(ii) and |x (z)| = α a...

Full description

Bibliographic Details
Main Authors: Armands Gritsans, Felix Sadyrbaev
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2011-04-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/5504
Description
Summary:Boundary value problems of the form  are considered, where  In our considerations functions f and g are generally nonlinear. We give a description of a solution set of the problem (i), (ii). It consist of all triples () such that (λ,μ,x(t)) nontrivially ′solves the problem(i),(ii) and |x (z)| = α at zero points z of the function x(t) (iii). We show that this solution set is a union of solution surfaces which are centro-affine equivalent. Each solution surface is associated with nontrivial solutions with definite nodal type. Properties of solution surfaces are studied. It is shown, in particular, that solution surface associated with solutions with exactly i zeroes in the interval (a,b) is centro-affne equivalent to a solution surface of the Dirichlet problem (i), x(a) = 0 = x(b), (iii) corresponding to solutions with odd number of zeros 2j − 1 (i ≠ 2j)in the interval (a,b).
ISSN:1392-6292
1648-3510