Influence of Valleys Terrain on Pressure of Fully Mechanized Working Faces in Shallow Coal Seams

The absence of a key stratum during overburden rock movement is crucial to the mining pressure of fully mechanized coal mining faces. Using physical and numerical simulations, the 21304 mechanized mining in Daliuta and Huojitu coal mining faces 1−2 appeared twice during a pressure frame accident ana...

Full description

Bibliographic Details
Main Authors: YingJie Liu, Qingjie Qi, Anhu Wang
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/8880041
Description
Summary:The absence of a key stratum during overburden rock movement is crucial to the mining pressure of fully mechanized coal mining faces. Using physical and numerical simulations, the 21304 mechanized mining in Daliuta and Huojitu coal mining faces 1−2 appeared twice during a pressure frame accident analysis. The results indicate that a lack of key overlying strata is crucial to the mining of lower coal seams, particularly for the upper sections of a single key stratum of coal. When the key stratum of the upper coal seam is absent, a stable masonry structure is formed after mining. It is easy to form stable stacked strata at the bottom of a coal seam. When developing gullies in deep terrains, the formation of the key stratum will be an upper rock fracture affected by the impact, resulting in a partial absence of the key stratum. When the key stratum is absent, the mining of upslope working faces and the probability of dynamic strata pressure increase with the overburden on the working face and mining of downslope faces. The face mine pressure development laws on the upper and lower coal seam mining were similar, mainly manifesting as “slope section >valley bottom section >back slope section.”
ISSN:1070-9622
1875-9203