Existence and multiplicity of solutions for a class of superlinear elliptic systems
In this paper, we establish the existence and multiplicity of solutions for a class of superlinear elliptic systems without Ambrosetti and Rabinowitz growth condition. Our results are based on minimax methods in critical point theory.
Main Authors: | Li Chun, Agarwal Ravi P., Wu Dong-Lun |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-05-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2016-0045 |
Similar Items
-
Existence via regularity of solutions for elliptic systems and saddle points of functionals of the calculus of variations
by: Boccardo Lucio, et al.
Published: (2017-05-01) -
Existence and multiplicity results for some Lane–Emden elliptic systems: Subquadratic case
by: Barile Sara, et al.
Published: (2015-02-01) -
Critical elliptic systems involving multiple strongly–coupled Hardy–type terms
by: Kang Dongsheng, et al.
Published: (2019-07-01) -
Multiplicity results for elliptic Kirchhoff-type problems
by: Baraket Sami, et al.
Published: (2017-02-01) -
Existence results for nonlinear elliptic problems on fractal domains
by: Ferrara Massimiliano, et al.
Published: (2016-02-01)