Malaria in migrant agricultural workers in western Ethiopia: entomological assessment of malaria transmission risk

Abstract Background Ethiopia has made great strides in malaria control over the last two decades. However, this progress has not been uniform and one concern has been reported high rates of malaria transmission in large agricultural development areas in western Ethiopia. Improved vector control is o...

Full description

Bibliographic Details
Main Authors: Sisay Dugassa, Mathew Murphy, Sheleme Chibsa, Yehualashet Tadesse, Gedeon Yohannes, Lena M. Lorenz, Hiwot Solomon, Delenasaw Yewhalaw, Seth R. Irish
Format: Article
Language:English
Published: BMC 2021-02-01
Series:Malaria Journal
Subjects:
Online Access:https://doi.org/10.1186/s12936-021-03633-1
Description
Summary:Abstract Background Ethiopia has made great strides in malaria control over the last two decades. However, this progress has not been uniform and one concern has been reported high rates of malaria transmission in large agricultural development areas in western Ethiopia. Improved vector control is one way this transmission might be addressed, but little is known about malaria vectors in this part of the country. Methods To better understand the vector species involved in malaria transmission and their behaviour, human landing collections were conducted in Dangur woreda, Benishangul-Gumuz, between July and December 2017. This period encompasses the months with the highest rain and the peak mosquito population. Mosquitoes were identified to species and tested for the presence of Plasmodium sporozoites. Results The predominant species of the Anopheles collected was Anopheles arabiensis (1,733; i.e. 61.3 % of the entire Anopheles), which was also the only species identified with sporozoites (Plasmodium falciparum and Plasmodium vivax). Anopheles arabiensis was collected as early in the evening as 18:00 h-19:00 h, and host-seeking continued until 5:00 h-6:00 h. Nearly equal numbers were collected indoors and outdoors. The calculated entomological inoculation rate for An. arabiensis for the study period was 1.41 infectious bites per month. More An. arabiensis were collected inside and outside worker’s shelters than in fields where workers were working at night. Conclusions Anopheles arabiensis is likely to be the primary vector of malaria in the agricultural development areas studied. High rates of human biting took place inside and outdoor near workers’ residential housing. Improved and targeted vector control in this area might considerably reduce malaria transmission.
ISSN:1475-2875