Summary: | Two quite different reverse osmosis (RO) polymeric membranes were examined for the final purification of olive mill wastewater from two-phase olive mills (OMW2): the first one is a thin-film composite (TFC) membrane consisting of polyamide active layer on polysulfone ultrafiltration support, whereas the other one is a low-pressure membrane made of asymmetric polyamide.
A net operating pressure (PTM) of 25 bar was found as the target for the TFC membrane, whereas for the asymmetric one a PTM of 8 bar was chosen, given that similar flux decay but still significant productivity was observed by increasing the PTM for this membrane. These results are confirmed by the fouling index (b) values calculated for each membrane.
Complete removal of suspended solids, phenolic compounds and iron was achieved by both membranes. Otherwise, the asymmetric membrane ensured slightly higher organic matter (COD) and electroconductivity (EC) reduction, leading to a COD concentration in the permeate stream equal to 3.7 mg L-1 and 1.4 mg L-1 (TFC vs. asymmetric), whereas the EC values were 97.0 and 31.0 µs cm-1, respectively. This would permit reusing the purified effluent provided by both membranes in the production process and close the loop at industrial scale.
Moreover, the asymmetric membrane provides a steady-state flux value of the same order of that yielded by the TFC membrane upon more than three times less PTM (14.9 L h-1m-2 at PTM = 8 bar vs. 15.2 L h-1m-2 at PTM = 25 bar), implying a reduction of the specific energy consumption above 50 %, from 0.30 € m-3 for the TFC membrane to 0.14€ m-3 for the asymmetric one.
|