Nicotine induces a dual effect on the beige-like phenotype in adipocytes

Nicotine, the main component of cigarette smoke, affects white/brown adipocytes. Few studies have concentrated on beige adipocytes. In this study, 3T3-L1 cells were differentiated in the presence of nicotine (25, 50 and 100 μmol/L) during early differentiation and maintenance stages. Cell viability...

Full description

Bibliographic Details
Main Authors: Chen Hui-Jian, Xiang Jie, Zhang Wan-Xia, Sun Ao, Li Gai-Ling, Yan You-e
Format: Article
Language:English
Published: University of Belgrade, University of Novi Sad 2019-01-01
Series:Archives of Biological Sciences
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-4664/2019/0354-46641900037C.pdf
Description
Summary:Nicotine, the main component of cigarette smoke, affects white/brown adipocytes. Few studies have concentrated on beige adipocytes. In this study, 3T3-L1 cells were differentiated in the presence of nicotine (25, 50 and 100 μmol/L) during early differentiation and maintenance stages. Cell viability and the state of lipid droplets were assessed by the MTT assay and Oil Red O, respectively, and the expression of beige-related genes and proteins was examined by RT-qPCR, Western blotting and flow cytometry. Nicotine did not alter adipocyte differentiation; however, it increased the expression of peroxisome proliferator- activated receptor gamma (PPARγ) protein during early differentiation and maintenance. Nicotine treatment during early differentiation downregulated gene and protein expression of PPARγ coactivator 1-alpha (PGC-1α), uncoupling protein 1 (UCP1) and cluster of differentiation 137 (CD137), and gene expression of Cbp/p300 interacting transactivator with Glu/ Asp rich carboxy-terminal domain 1 (Cited1), transmembrane protein 26 (Tmem26), and short stature homeobox 2 (Shox2). Nicotine treatment during the maintenance stage upregulated these beige-related genes/proteins. Nicotine treatment of immature adipocytes damaged beige function through a decrease in PGC-1α/UCP1 expression, but nicotine treatment of mature adipocytes or both immature and mature cells enhanced beige functioning. Nicotine induced beige-like phenotype dysfunction in 3T3-L1 adipocytes. This process may affect thermogenesis in adipose tissue and cause a dysfunction in fat metabolism.
ISSN:0354-4664
1821-4339