Mining frequent itemsets from streaming transaction data using genetic algorithms

Abstract This paper presents a study of mining frequent itemsets from streaming data in the presence of concept drift. Streaming data, being volatile in nature, is particularly challenging to mine. An approach using genetic algorithms is presented, and various relationships between concept drift, sl...

Full description

Bibliographic Details
Main Authors: Sikha Bagui, Patrick Stanley
Format: Article
Language:English
Published: SpringerOpen 2020-07-01
Series:Journal of Big Data
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40537-020-00330-9