Near-real-time automated classification of seismic signals of slope failures with continuous random forests
<p>In mountainous areas, rockfalls, rock avalanches, and debris flows constitute a risk to human life and property. Seismology has proven a useful tool to monitor such mass movements, while increasing data volumes and availability of real-time data streams demand new solutions for automatic si...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-01-01
|
Series: | Natural Hazards and Earth System Sciences |
Online Access: | https://nhess.copernicus.org/articles/21/339/2021/nhess-21-339-2021.pdf |
id |
doaj-25d9b0d1f52f4316b253fc4c47300a9b |
---|---|
record_format |
Article |
spelling |
doaj-25d9b0d1f52f4316b253fc4c47300a9b2021-01-27T14:30:09ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812021-01-012133936110.5194/nhess-21-339-2021Near-real-time automated classification of seismic signals of slope failures with continuous random forestsM. Wenner0M. Wenner1C. Hibert2A. van Herwijnen3L. Meier4F. Walter5Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zürich, SwitzerlandSwiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, SwitzerlandUniversité de Strasbourg, CNRS, EOST/IPGS UMR 7516, 67000 Strasbourg, FranceWSL Institute for Snow Avalanche Research SLF, Davos, SwitzerlandGeopraevent Ltd., Zürich, SwitzerlandLaboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zürich, Switzerland<p>In mountainous areas, rockfalls, rock avalanches, and debris flows constitute a risk to human life and property. Seismology has proven a useful tool to monitor such mass movements, while increasing data volumes and availability of real-time data streams demand new solutions for automatic signal classification. Ideally, seismic monitoring arrays have large apertures and record a significant number of mass movements to train detection algorithms. However, this is rarely the case, as a result of cost and time constraints and the rare occurrence of catastrophic mass movements. Here, we use the supervised random forest algorithm to classify windowed seismic data on a continuous data stream. We investigate algorithm performance for signal classification into noise (NO), slope failure (SF), and earthquake (EQ) classes and explore the influence of non-ideal though commonly encountered conditions: poor network coverage, imbalanced data sets, and low signal-to-noise ratios (SNRs). To this end we use data from two separate locations in the Swiss Alps: data set (i), recorded at Illgraben, contains signals of several dozen slope failures with low SNR; data set (ii), recorded at Pizzo Cengalo, contains only five slope failure events albeit with higher SNR. The low SNR of slope failure events in data set (i) leads to a classification accuracy of 70 % for SF, with the largest confusion between NO and SF. Although data set (ii) is highly imbalanced, lowering the prediction threshold for slope failures leads to a prediction accuracy of 80 % for SF, with the largest confusion between SF and EQ. Standard techniques to mitigate training data imbalance do not increase prediction accuracy. The classifier of data set (ii) is then used to train a model for the classification of 176 d of continuous seismic recordings containing four slope failure events. The model classifies eight events as slope failures, of which two are snow avalanches, and one is a rock-slope failure. The other events are local or regional earthquakes. By including earthquake detection of a permanent seismic station at 131 km distance to the test site into the decision-making process, all earthquakes falsely classified as slope failures can be excluded. Our study shows that, even for limited training data and non-optimal network geometry, machine learning algorithms applied to high-quality seismic records can be used to monitor mass movements automatically.</p>https://nhess.copernicus.org/articles/21/339/2021/nhess-21-339-2021.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Wenner M. Wenner C. Hibert A. van Herwijnen L. Meier F. Walter |
spellingShingle |
M. Wenner M. Wenner C. Hibert A. van Herwijnen L. Meier F. Walter Near-real-time automated classification of seismic signals of slope failures with continuous random forests Natural Hazards and Earth System Sciences |
author_facet |
M. Wenner M. Wenner C. Hibert A. van Herwijnen L. Meier F. Walter |
author_sort |
M. Wenner |
title |
Near-real-time automated classification of seismic signals of slope failures with continuous random forests |
title_short |
Near-real-time automated classification of seismic signals of slope failures with continuous random forests |
title_full |
Near-real-time automated classification of seismic signals of slope failures with continuous random forests |
title_fullStr |
Near-real-time automated classification of seismic signals of slope failures with continuous random forests |
title_full_unstemmed |
Near-real-time automated classification of seismic signals of slope failures with continuous random forests |
title_sort |
near-real-time automated classification of seismic signals of slope failures with continuous random forests |
publisher |
Copernicus Publications |
series |
Natural Hazards and Earth System Sciences |
issn |
1561-8633 1684-9981 |
publishDate |
2021-01-01 |
description |
<p>In mountainous areas, rockfalls, rock avalanches, and debris flows constitute a risk to human life and property. Seismology has proven a useful tool to monitor such mass movements, while increasing data volumes and availability of real-time data streams demand new solutions for automatic signal classification. Ideally, seismic monitoring arrays have large apertures and record a significant number of mass movements to train detection algorithms. However, this is rarely the case, as a result of cost and time constraints and the rare occurrence of catastrophic mass movements. Here, we use the supervised random forest algorithm to classify windowed seismic data on a continuous data stream. We investigate algorithm performance for signal classification into noise (NO), slope failure (SF), and earthquake (EQ) classes and explore the influence of non-ideal though commonly encountered conditions: poor network coverage, imbalanced data sets, and low signal-to-noise ratios (SNRs). To this end we use data from two separate locations in the Swiss Alps: data set (i), recorded at Illgraben, contains signals of several dozen slope failures with low SNR; data set (ii), recorded at Pizzo Cengalo, contains only five slope failure events albeit with higher SNR. The low SNR of slope failure events in data set (i) leads to a classification accuracy of 70 % for SF, with the largest confusion between NO and SF. Although data set (ii) is highly imbalanced, lowering the prediction threshold for slope failures leads to a prediction accuracy of 80 % for SF, with the largest confusion between SF and EQ. Standard techniques to mitigate training data imbalance do not increase prediction accuracy. The classifier of data set (ii) is then used to train a model for the classification of 176 d of continuous seismic recordings containing four slope failure events. The model classifies eight events as slope failures, of which two are snow avalanches, and one is a rock-slope failure. The other events are local or regional earthquakes. By including earthquake detection of a permanent seismic station at 131 km distance to the test site into the decision-making process, all earthquakes falsely classified as slope failures can be excluded. Our study shows that, even for limited training data and non-optimal network geometry, machine learning algorithms applied to high-quality seismic records can be used to monitor mass movements automatically.</p> |
url |
https://nhess.copernicus.org/articles/21/339/2021/nhess-21-339-2021.pdf |
work_keys_str_mv |
AT mwenner nearrealtimeautomatedclassificationofseismicsignalsofslopefailureswithcontinuousrandomforests AT mwenner nearrealtimeautomatedclassificationofseismicsignalsofslopefailureswithcontinuousrandomforests AT chibert nearrealtimeautomatedclassificationofseismicsignalsofslopefailureswithcontinuousrandomforests AT avanherwijnen nearrealtimeautomatedclassificationofseismicsignalsofslopefailureswithcontinuousrandomforests AT lmeier nearrealtimeautomatedclassificationofseismicsignalsofslopefailureswithcontinuousrandomforests AT fwalter nearrealtimeautomatedclassificationofseismicsignalsofslopefailureswithcontinuousrandomforests |
_version_ |
1724320910363590656 |