A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

This paper presents a new method for battery degradation estimation using a power-energy (PE) function in a battery/ultracapacitor hybrid energy storage system (HESS), and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive top...

Full description

Bibliographic Details
Main Authors: Yuanbin Yu, Dongdong Zhang, Haitao Min, Yi Tang, Tao Zhu
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2016/4903138
Description
Summary:This paper presents a new method for battery degradation estimation using a power-energy (PE) function in a battery/ultracapacitor hybrid energy storage system (HESS), and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC) coupled directly with DC-link is adopted for a hybrid electric city bus (HECB). In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.
ISSN:1024-123X
1563-5147