Confined Quantum Hard Spheres

We present computer simulation and theoretical results for a system of <i>N</i> Quantum Hard Spheres (QHS) particles of diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></s...

Full description

Bibliographic Details
Main Authors: Sergio Contreras, Alejandro Gil-Villegas
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/6/775
id doaj-25c28cbb5a384fc1b9c0dbc945428753
record_format Article
spelling doaj-25c28cbb5a384fc1b9c0dbc9454287532021-07-01T00:35:44ZengMDPI AGEntropy1099-43002021-06-012377577510.3390/e23060775Confined Quantum Hard SpheresSergio Contreras0Alejandro Gil-Villegas1División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, León, Guanajuato 37150, MexicoDivisión de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, León, Guanajuato 37150, MexicoWe present computer simulation and theoretical results for a system of <i>N</i> Quantum Hard Spheres (QHS) particles of diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> and mass <i>m</i> at temperature <i>T</i>, confined between parallel hard walls separated by a distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>σ</mi></mrow></semantics></math></inline-formula>, within the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>H</mi><mo>≤</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. Semiclassical Monte Carlo computer simulations were performed adapted to a confined space, considering effects in terms of the density of particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ρ</mi><mo>*</mo></msup><mo>=</mo><mi>N</mi><mo>/</mo><mi>V</mi></mrow></semantics></math></inline-formula>, where <i>V</i> is the accessible volume, the inverse length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and the de Broglie’s thermal wavelength <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>B</mi></msub><mo>=</mo><mi>h</mi><mo>/</mo><msqrt><mrow><mn>2</mn><mi>π</mi><mi>m</mi><mi>k</mi><mi>T</mi></mrow></msqrt></mrow></semantics></math></inline-formula>, where <i>k</i> and <i>h</i> are the Boltzmann’s and Planck’s constants, respectively. For the case of extreme and maximum confinement, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn><mo><</mo><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, respectively, analytical results can be given based on an extension for quantum systems of the Helmholtz free energies for the corresponding classical systems.https://www.mdpi.com/1099-4300/23/6/775hard spheresperturbation theoryquantum fluidsquantum Monte Carlo
collection DOAJ
language English
format Article
sources DOAJ
author Sergio Contreras
Alejandro Gil-Villegas
spellingShingle Sergio Contreras
Alejandro Gil-Villegas
Confined Quantum Hard Spheres
Entropy
hard spheres
perturbation theory
quantum fluids
quantum Monte Carlo
author_facet Sergio Contreras
Alejandro Gil-Villegas
author_sort Sergio Contreras
title Confined Quantum Hard Spheres
title_short Confined Quantum Hard Spheres
title_full Confined Quantum Hard Spheres
title_fullStr Confined Quantum Hard Spheres
title_full_unstemmed Confined Quantum Hard Spheres
title_sort confined quantum hard spheres
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2021-06-01
description We present computer simulation and theoretical results for a system of <i>N</i> Quantum Hard Spheres (QHS) particles of diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> and mass <i>m</i> at temperature <i>T</i>, confined between parallel hard walls separated by a distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>σ</mi></mrow></semantics></math></inline-formula>, within the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>H</mi><mo>≤</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. Semiclassical Monte Carlo computer simulations were performed adapted to a confined space, considering effects in terms of the density of particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ρ</mi><mo>*</mo></msup><mo>=</mo><mi>N</mi><mo>/</mo><mi>V</mi></mrow></semantics></math></inline-formula>, where <i>V</i> is the accessible volume, the inverse length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and the de Broglie’s thermal wavelength <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>B</mi></msub><mo>=</mo><mi>h</mi><mo>/</mo><msqrt><mrow><mn>2</mn><mi>π</mi><mi>m</mi><mi>k</mi><mi>T</mi></mrow></msqrt></mrow></semantics></math></inline-formula>, where <i>k</i> and <i>h</i> are the Boltzmann’s and Planck’s constants, respectively. For the case of extreme and maximum confinement, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn><mo><</mo><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, respectively, analytical results can be given based on an extension for quantum systems of the Helmholtz free energies for the corresponding classical systems.
topic hard spheres
perturbation theory
quantum fluids
quantum Monte Carlo
url https://www.mdpi.com/1099-4300/23/6/775
work_keys_str_mv AT sergiocontreras confinedquantumhardspheres
AT alejandrogilvillegas confinedquantumhardspheres
_version_ 1721348146226790400