Confined Quantum Hard Spheres
We present computer simulation and theoretical results for a system of <i>N</i> Quantum Hard Spheres (QHS) particles of diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></s...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/6/775 |
id |
doaj-25c28cbb5a384fc1b9c0dbc945428753 |
---|---|
record_format |
Article |
spelling |
doaj-25c28cbb5a384fc1b9c0dbc9454287532021-07-01T00:35:44ZengMDPI AGEntropy1099-43002021-06-012377577510.3390/e23060775Confined Quantum Hard SpheresSergio Contreras0Alejandro Gil-Villegas1División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, León, Guanajuato 37150, MexicoDivisión de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, León, Guanajuato 37150, MexicoWe present computer simulation and theoretical results for a system of <i>N</i> Quantum Hard Spheres (QHS) particles of diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> and mass <i>m</i> at temperature <i>T</i>, confined between parallel hard walls separated by a distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>σ</mi></mrow></semantics></math></inline-formula>, within the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>H</mi><mo>≤</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. Semiclassical Monte Carlo computer simulations were performed adapted to a confined space, considering effects in terms of the density of particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ρ</mi><mo>*</mo></msup><mo>=</mo><mi>N</mi><mo>/</mo><mi>V</mi></mrow></semantics></math></inline-formula>, where <i>V</i> is the accessible volume, the inverse length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and the de Broglie’s thermal wavelength <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>B</mi></msub><mo>=</mo><mi>h</mi><mo>/</mo><msqrt><mrow><mn>2</mn><mi>π</mi><mi>m</mi><mi>k</mi><mi>T</mi></mrow></msqrt></mrow></semantics></math></inline-formula>, where <i>k</i> and <i>h</i> are the Boltzmann’s and Planck’s constants, respectively. For the case of extreme and maximum confinement, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn><mo><</mo><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, respectively, analytical results can be given based on an extension for quantum systems of the Helmholtz free energies for the corresponding classical systems.https://www.mdpi.com/1099-4300/23/6/775hard spheresperturbation theoryquantum fluidsquantum Monte Carlo |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sergio Contreras Alejandro Gil-Villegas |
spellingShingle |
Sergio Contreras Alejandro Gil-Villegas Confined Quantum Hard Spheres Entropy hard spheres perturbation theory quantum fluids quantum Monte Carlo |
author_facet |
Sergio Contreras Alejandro Gil-Villegas |
author_sort |
Sergio Contreras |
title |
Confined Quantum Hard Spheres |
title_short |
Confined Quantum Hard Spheres |
title_full |
Confined Quantum Hard Spheres |
title_fullStr |
Confined Quantum Hard Spheres |
title_full_unstemmed |
Confined Quantum Hard Spheres |
title_sort |
confined quantum hard spheres |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-06-01 |
description |
We present computer simulation and theoretical results for a system of <i>N</i> Quantum Hard Spheres (QHS) particles of diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> and mass <i>m</i> at temperature <i>T</i>, confined between parallel hard walls separated by a distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>σ</mi></mrow></semantics></math></inline-formula>, within the range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>H</mi><mo>≤</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. Semiclassical Monte Carlo computer simulations were performed adapted to a confined space, considering effects in terms of the density of particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ρ</mi><mo>*</mo></msup><mo>=</mo><mi>N</mi><mo>/</mo><mi>V</mi></mrow></semantics></math></inline-formula>, where <i>V</i> is the accessible volume, the inverse length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and the de Broglie’s thermal wavelength <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>B</mi></msub><mo>=</mo><mi>h</mi><mo>/</mo><msqrt><mrow><mn>2</mn><mi>π</mi><mi>m</mi><mi>k</mi><mi>T</mi></mrow></msqrt></mrow></semantics></math></inline-formula>, where <i>k</i> and <i>h</i> are the Boltzmann’s and Planck’s constants, respectively. For the case of extreme and maximum confinement, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.5</mn><mo><</mo><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, respectively, analytical results can be given based on an extension for quantum systems of the Helmholtz free energies for the corresponding classical systems. |
topic |
hard spheres perturbation theory quantum fluids quantum Monte Carlo |
url |
https://www.mdpi.com/1099-4300/23/6/775 |
work_keys_str_mv |
AT sergiocontreras confinedquantumhardspheres AT alejandrogilvillegas confinedquantumhardspheres |
_version_ |
1721348146226790400 |