Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing Study

The corticotectal projections, together with the corticobulbar (corticoreticular) projections, work in parallel with the corticospinal tract (CST) to influence motoneurons in the spinal cord both directly and indirectly via the brainstem descending pathways. The tectospinal tract (TST) originates in...

Full description

Bibliographic Details
Main Authors: Michela Fregosi, Alessandro Contestabile, Simon Badoud, Simon Borgognon, Jérôme Cottet, Jean-François Brunet, Jocelyne Bloch, Martin E. Schwab, Eric M. Rouiller
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-05-01
Series:Frontiers in Neuroanatomy
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnana.2019.00050/full
id doaj-25b6646e1a2648baac24d289e6e5ea12
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Michela Fregosi
Michela Fregosi
Michela Fregosi
Michela Fregosi
Alessandro Contestabile
Alessandro Contestabile
Alessandro Contestabile
Alessandro Contestabile
Simon Badoud
Simon Badoud
Simon Badoud
Simon Badoud
Simon Borgognon
Simon Borgognon
Simon Borgognon
Simon Borgognon
Jérôme Cottet
Jérôme Cottet
Jérôme Cottet
Jérôme Cottet
Jean-François Brunet
Jocelyne Bloch
Martin E. Schwab
Eric M. Rouiller
spellingShingle Michela Fregosi
Michela Fregosi
Michela Fregosi
Michela Fregosi
Alessandro Contestabile
Alessandro Contestabile
Alessandro Contestabile
Alessandro Contestabile
Simon Badoud
Simon Badoud
Simon Badoud
Simon Badoud
Simon Borgognon
Simon Borgognon
Simon Borgognon
Simon Borgognon
Jérôme Cottet
Jérôme Cottet
Jérôme Cottet
Jérôme Cottet
Jean-François Brunet
Jocelyne Bloch
Martin E. Schwab
Eric M. Rouiller
Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing Study
Frontiers in Neuroanatomy
non-human primate
anterograde tracing
motor cortex
brainstem
Parkinson
spinal cord injury
author_facet Michela Fregosi
Michela Fregosi
Michela Fregosi
Michela Fregosi
Alessandro Contestabile
Alessandro Contestabile
Alessandro Contestabile
Alessandro Contestabile
Simon Badoud
Simon Badoud
Simon Badoud
Simon Badoud
Simon Borgognon
Simon Borgognon
Simon Borgognon
Simon Borgognon
Jérôme Cottet
Jérôme Cottet
Jérôme Cottet
Jérôme Cottet
Jean-François Brunet
Jocelyne Bloch
Martin E. Schwab
Eric M. Rouiller
author_sort Michela Fregosi
title Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing Study
title_short Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing Study
title_full Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing Study
title_fullStr Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing Study
title_full_unstemmed Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing Study
title_sort corticotectal projections from the premotor or primary motor cortex after cortical lesion or parkinsonian symptoms in adult macaque monkeys: a pilot tracing study
publisher Frontiers Media S.A.
series Frontiers in Neuroanatomy
issn 1662-5129
publishDate 2019-05-01
description The corticotectal projections, together with the corticobulbar (corticoreticular) projections, work in parallel with the corticospinal tract (CST) to influence motoneurons in the spinal cord both directly and indirectly via the brainstem descending pathways. The tectospinal tract (TST) originates in the deep layers of the superior colliculus. In the present study, we analyzed the corticotectal projections from two motor cortical areas, namely the premotor cortex (PM) and the primary motor cortex (M1) in eight macaque monkeys subjected to either a cortical lesion of the hand area in M1 (n = 4) or Parkinson’s disease-like symptoms PD (n = 4). A subgroup of monkeys with cortical lesion was subjected to anti-Nogo-A antibody treatment whereas all PD monkeys were transplanted with Autologous Neural Cell Ecosystems (ANCEs). The anterograde tracer BDA was used to label the axonal boutons both en passant and terminaux in the ipsilateral superior colliculus. Individual axonal boutons were charted in the different layers of the superior colliculus. In intact animals, we previously observed that corticotectal projections were denser when originating from PM than from M1. In the present M1 lesioned monkeys, as compared to intact ones the corticotectal projection originating from PM was decreased when treated with anti-Nogo-A antibody but not in untreated monkeys. In PD-like symptoms’ monkeys, on the other hand, there was no consistent change affecting the corticotectal projection as compared to intact monkeys. The present pilot study overall suggests that the corticotectal projection is less affected by M1 lesion or PD symptoms than the corticoreticular projection previously reported in the same animals.
topic non-human primate
anterograde tracing
motor cortex
brainstem
Parkinson
spinal cord injury
url https://www.frontiersin.org/article/10.3389/fnana.2019.00050/full
work_keys_str_mv AT michelafregosi corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT michelafregosi corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT michelafregosi corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT michelafregosi corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT alessandrocontestabile corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT alessandrocontestabile corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT alessandrocontestabile corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT alessandrocontestabile corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT simonbadoud corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT simonbadoud corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT simonbadoud corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT simonbadoud corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT simonborgognon corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT simonborgognon corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT simonborgognon corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT simonborgognon corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT jeromecottet corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT jeromecottet corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT jeromecottet corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT jeromecottet corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT jeanfrancoisbrunet corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT jocelynebloch corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT martineschwab corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
AT ericmrouiller corticotectalprojectionsfromthepremotororprimarymotorcortexaftercorticallesionorparkinsoniansymptomsinadultmacaquemonkeysapilottracingstudy
_version_ 1724881480474165248
spelling doaj-25b6646e1a2648baac24d289e6e5ea122020-11-25T02:18:32ZengFrontiers Media S.A.Frontiers in Neuroanatomy1662-51292019-05-011310.3389/fnana.2019.00050449659Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing StudyMichela Fregosi0Michela Fregosi1Michela Fregosi2Michela Fregosi3Alessandro Contestabile4Alessandro Contestabile5Alessandro Contestabile6Alessandro Contestabile7Simon Badoud8Simon Badoud9Simon Badoud10Simon Badoud11Simon Borgognon12Simon Borgognon13Simon Borgognon14Simon Borgognon15Jérôme Cottet16Jérôme Cottet17Jérôme Cottet18Jérôme Cottet19Jean-François Brunet20Jocelyne Bloch21Martin E. Schwab22Eric M. Rouiller23Section of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, SwitzerlandFribourg Cognition Center, Fribourg, SwitzerlandPlatform of Translational Neurosciences, Fribourg, SwitzerlandSwiss Primate Competence Center for Research (SPCCR), Fribourg, SwitzerlandSection of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, SwitzerlandFribourg Cognition Center, Fribourg, SwitzerlandPlatform of Translational Neurosciences, Fribourg, SwitzerlandSwiss Primate Competence Center for Research (SPCCR), Fribourg, SwitzerlandSection of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, SwitzerlandFribourg Cognition Center, Fribourg, SwitzerlandPlatform of Translational Neurosciences, Fribourg, SwitzerlandSwiss Primate Competence Center for Research (SPCCR), Fribourg, SwitzerlandSection of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, SwitzerlandFribourg Cognition Center, Fribourg, SwitzerlandPlatform of Translational Neurosciences, Fribourg, SwitzerlandSwiss Primate Competence Center for Research (SPCCR), Fribourg, SwitzerlandSection of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, SwitzerlandFribourg Cognition Center, Fribourg, SwitzerlandPlatform of Translational Neurosciences, Fribourg, SwitzerlandSwiss Primate Competence Center for Research (SPCCR), Fribourg, SwitzerlandCell Production Center (CPC), Lausanne University Hospital (CHUV), Lausanne, SwitzerlandDepartment of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, SwitzerlandBrain Research Institute, University of Zurich, Zurich, SwitzerlandSection of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, SwitzerlandThe corticotectal projections, together with the corticobulbar (corticoreticular) projections, work in parallel with the corticospinal tract (CST) to influence motoneurons in the spinal cord both directly and indirectly via the brainstem descending pathways. The tectospinal tract (TST) originates in the deep layers of the superior colliculus. In the present study, we analyzed the corticotectal projections from two motor cortical areas, namely the premotor cortex (PM) and the primary motor cortex (M1) in eight macaque monkeys subjected to either a cortical lesion of the hand area in M1 (n = 4) or Parkinson’s disease-like symptoms PD (n = 4). A subgroup of monkeys with cortical lesion was subjected to anti-Nogo-A antibody treatment whereas all PD monkeys were transplanted with Autologous Neural Cell Ecosystems (ANCEs). The anterograde tracer BDA was used to label the axonal boutons both en passant and terminaux in the ipsilateral superior colliculus. Individual axonal boutons were charted in the different layers of the superior colliculus. In intact animals, we previously observed that corticotectal projections were denser when originating from PM than from M1. In the present M1 lesioned monkeys, as compared to intact ones the corticotectal projection originating from PM was decreased when treated with anti-Nogo-A antibody but not in untreated monkeys. In PD-like symptoms’ monkeys, on the other hand, there was no consistent change affecting the corticotectal projection as compared to intact monkeys. The present pilot study overall suggests that the corticotectal projection is less affected by M1 lesion or PD symptoms than the corticoreticular projection previously reported in the same animals.https://www.frontiersin.org/article/10.3389/fnana.2019.00050/fullnon-human primateanterograde tracingmotor cortexbrainstemParkinsonspinal cord injury