Study of high frequency acoustic directional transmission model based on graphene structure

The directional transmission of high-frequency sound waves is of great significance to the development of underwater communication and cell photoacoustic detection. In order to overcome the transmission loss of high-frequency sound waves, a new high-frequency sound wave directional transmission mode...

Full description

Bibliographic Details
Main Authors: Peng Yang, Jingzhi Wu, Rongrong Zhao, Jianning Han
Format: Article
Language:English
Published: AIP Publishing LLC 2020-03-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5143330
Description
Summary:The directional transmission of high-frequency sound waves is of great significance to the development of underwater communication and cell photoacoustic detection. In order to overcome the transmission loss of high-frequency sound waves, a new high-frequency sound wave directional transmission model based on acoustic metamaterials and graphene structures has been designed. The local sound field enhancement effect and directional transmission effect of this model on high-frequency sound waves were verified through finite element analysis. Using the special case of 450 kHz sound waves, the transmission effect of high-frequency sound waves in the model was studied. The result shows that the acoustic wave directional transmission model based on acoustic metamaterials and graphene structures had good high-frequency acoustic wave directional transmission characteristics. This research has important practical value in the research of underwater communication and cell photoacoustic detection.
ISSN:2158-3226