Free-standing silicon shadow masks for transmon qubit fabrication

Nanofabrication techniques for superconducting qubits rely on resist-based masks patterned by electron-beam or optical lithography. We have developed an alternative nanofabrication technique based on free-standing silicon shadow masks fabricated from silicon-on-insulator wafers. These silicon shadow...

Full description

Bibliographic Details
Main Authors: I. Tsioutsios, K. Serniak, S. Diamond, V. V. Sivak, Z. Wang, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. H. Devoret
Format: Article
Language:English
Published: AIP Publishing LLC 2020-06-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5138953
id doaj-25a1d35a86cc4d03b40a567acac980e7
record_format Article
spelling doaj-25a1d35a86cc4d03b40a567acac980e72020-11-25T03:15:02ZengAIP Publishing LLCAIP Advances2158-32262020-06-01106065120065120-610.1063/1.5138953Free-standing silicon shadow masks for transmon qubit fabricationI. Tsioutsios0K. Serniak1S. Diamond2V. V. Sivak3Z. Wang4S. Shankar5L. Frunzio6R. J. Schoelkopf7M. H. Devoret8Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USADepartment of Applied Physics, Yale University, New Haven, Connecticut 06520, USADepartment of Applied Physics, Yale University, New Haven, Connecticut 06520, USADepartment of Applied Physics, Yale University, New Haven, Connecticut 06520, USADepartment of Applied Physics, Yale University, New Haven, Connecticut 06520, USADepartment of Applied Physics, Yale University, New Haven, Connecticut 06520, USADepartment of Applied Physics, Yale University, New Haven, Connecticut 06520, USADepartment of Applied Physics, Yale University, New Haven, Connecticut 06520, USADepartment of Applied Physics, Yale University, New Haven, Connecticut 06520, USANanofabrication techniques for superconducting qubits rely on resist-based masks patterned by electron-beam or optical lithography. We have developed an alternative nanofabrication technique based on free-standing silicon shadow masks fabricated from silicon-on-insulator wafers. These silicon shadow masks not only eliminate organic residues associated with resist-based lithography, but also provide a pathway to better understand and control surface-dielectric losses in superconducting qubits by decoupling mask fabrication from substrate preparation. We have successfully fabricated aluminum 3D transmon superconducting qubits with these shadow masks and found coherence quality factors comparable to those fabricated with standard techniques.http://dx.doi.org/10.1063/1.5138953
collection DOAJ
language English
format Article
sources DOAJ
author I. Tsioutsios
K. Serniak
S. Diamond
V. V. Sivak
Z. Wang
S. Shankar
L. Frunzio
R. J. Schoelkopf
M. H. Devoret
spellingShingle I. Tsioutsios
K. Serniak
S. Diamond
V. V. Sivak
Z. Wang
S. Shankar
L. Frunzio
R. J. Schoelkopf
M. H. Devoret
Free-standing silicon shadow masks for transmon qubit fabrication
AIP Advances
author_facet I. Tsioutsios
K. Serniak
S. Diamond
V. V. Sivak
Z. Wang
S. Shankar
L. Frunzio
R. J. Schoelkopf
M. H. Devoret
author_sort I. Tsioutsios
title Free-standing silicon shadow masks for transmon qubit fabrication
title_short Free-standing silicon shadow masks for transmon qubit fabrication
title_full Free-standing silicon shadow masks for transmon qubit fabrication
title_fullStr Free-standing silicon shadow masks for transmon qubit fabrication
title_full_unstemmed Free-standing silicon shadow masks for transmon qubit fabrication
title_sort free-standing silicon shadow masks for transmon qubit fabrication
publisher AIP Publishing LLC
series AIP Advances
issn 2158-3226
publishDate 2020-06-01
description Nanofabrication techniques for superconducting qubits rely on resist-based masks patterned by electron-beam or optical lithography. We have developed an alternative nanofabrication technique based on free-standing silicon shadow masks fabricated from silicon-on-insulator wafers. These silicon shadow masks not only eliminate organic residues associated with resist-based lithography, but also provide a pathway to better understand and control surface-dielectric losses in superconducting qubits by decoupling mask fabrication from substrate preparation. We have successfully fabricated aluminum 3D transmon superconducting qubits with these shadow masks and found coherence quality factors comparable to those fabricated with standard techniques.
url http://dx.doi.org/10.1063/1.5138953
work_keys_str_mv AT itsioutsios freestandingsiliconshadowmasksfortransmonqubitfabrication
AT kserniak freestandingsiliconshadowmasksfortransmonqubitfabrication
AT sdiamond freestandingsiliconshadowmasksfortransmonqubitfabrication
AT vvsivak freestandingsiliconshadowmasksfortransmonqubitfabrication
AT zwang freestandingsiliconshadowmasksfortransmonqubitfabrication
AT sshankar freestandingsiliconshadowmasksfortransmonqubitfabrication
AT lfrunzio freestandingsiliconshadowmasksfortransmonqubitfabrication
AT rjschoelkopf freestandingsiliconshadowmasksfortransmonqubitfabrication
AT mhdevoret freestandingsiliconshadowmasksfortransmonqubitfabrication
_version_ 1724640954549272576